Visual Servo Control of Underwater Vehicles Based on Image Moments

Yang Zhou, Yuanxu Zhang, Jian Gao, Xuman An
{"title":"Visual Servo Control of Underwater Vehicles Based on Image Moments","authors":"Yang Zhou, Yuanxu Zhang, Jian Gao, Xuman An","doi":"10.1109/ICARM52023.2021.9536071","DOIUrl":null,"url":null,"abstract":"To solve the dynamic positioning problem of underwater vehicles for executing autonomous operation tasks, an image moments-based six degrees of freedom (DOF) visual servo control method is proposed. At first, the equations of motion of underwater vehicles are presented, and the image moments of underwater objects are introduced. Then the Jacobian matrix of image moments is derived, and the image- based visual servo control algorithm is designed, in which the feedback states are constructed by the image moments and attitude angles of the vehicle. To estimate the pitch and roll angles, a multi-layer neural network is trained to approximate the angles with image moments. The stability of the proposed visual servo control is analyzed by a Lyapunov-based method. The simulation results prove that the proposed control method has satisfactory performances for decoupled control of different DOFs with underwater targets with different shapes.","PeriodicalId":367307,"journal":{"name":"2021 6th IEEE International Conference on Advanced Robotics and Mechatronics (ICARM)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 6th IEEE International Conference on Advanced Robotics and Mechatronics (ICARM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARM52023.2021.9536071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

To solve the dynamic positioning problem of underwater vehicles for executing autonomous operation tasks, an image moments-based six degrees of freedom (DOF) visual servo control method is proposed. At first, the equations of motion of underwater vehicles are presented, and the image moments of underwater objects are introduced. Then the Jacobian matrix of image moments is derived, and the image- based visual servo control algorithm is designed, in which the feedback states are constructed by the image moments and attitude angles of the vehicle. To estimate the pitch and roll angles, a multi-layer neural network is trained to approximate the angles with image moments. The stability of the proposed visual servo control is analyzed by a Lyapunov-based method. The simulation results prove that the proposed control method has satisfactory performances for decoupled control of different DOFs with underwater targets with different shapes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于图像矩的水下机器人视觉伺服控制
为了解决水下航行器执行自主作业任务的动态定位问题,提出了一种基于图像矩的六自由度视觉伺服控制方法。首先给出了水下航行器的运动方程,并引入了水下物体的像矩。然后推导了图像矩的雅可比矩阵,设计了基于图像的视觉伺服控制算法,该算法由图像矩和姿态角构成反馈状态。为了估计俯仰角和滚转角,我们训练了一个多层神经网络,用图像矩来近似俯仰角和滚转角。采用基于李雅普诺夫的方法分析了视觉伺服控制的稳定性。仿真结果表明,所提出的控制方法对于不同形状水下目标的不同自由度解耦控制具有满意的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Non-model Friction Disturbance Compensation of a Pan-tilt Based on MUAV for Aerial Remote Sensing Application Multi-Modal Attention Guided Real-Time Lane Detection Amphibious Robot with a Novel Composite Propulsion Mechanism Iterative Learning Control of Impedance Parameters for a Soft Exosuit Triple-step Nonlinear Controller with MLFNN for a Lower Limb Rehabilitation Robot
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1