Analysis of Two-Dimensional Steady-State Heat Conduction in Anisotropic Solids by Boundary Element Method Using Analog Equation Method and Green's Theorem

S. Ishiguro, Hiromichi Nakajima, Masataka Tanaka
{"title":"Analysis of Two-Dimensional Steady-State Heat Conduction in Anisotropic Solids by Boundary Element Method Using Analog Equation Method and Green's Theorem","authors":"S. Ishiguro, Hiromichi Nakajima, Masataka Tanaka","doi":"10.1299/JCST.3.66","DOIUrl":null,"url":null,"abstract":"This paper is concerned with the application of the boundary element method (BEM) with the analog equation method (AEM), proposed by Katsikadelis and Nerantzaki, and Green's theorem to analyze steady-state heat conduction in anisotropic solids. In this study, the linear differential operator (the Laplacian) of steady-state heat conduction in isotropic solids is extracted from the governing differential equation. The integral equation formulated employs the fundamental solution of the Laplace equation for isotropic solids, and therefore, from the anisotropic part of the governing differential equation, a domain integral appears in the boundary integral equation. This domain integral is transformed into boundary integrals using Green's theorem with a polynomial function. The mathematical formulation of this approach for two-dimensional problems is presented in detail. The proposed solution is applied to two typical examples, and the validity and other numerical properties of the proposed BEM are demonstrated in the discussion of the results obtained.","PeriodicalId":196913,"journal":{"name":"Journal of Computational Science and Technology","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1299/JCST.3.66","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper is concerned with the application of the boundary element method (BEM) with the analog equation method (AEM), proposed by Katsikadelis and Nerantzaki, and Green's theorem to analyze steady-state heat conduction in anisotropic solids. In this study, the linear differential operator (the Laplacian) of steady-state heat conduction in isotropic solids is extracted from the governing differential equation. The integral equation formulated employs the fundamental solution of the Laplace equation for isotropic solids, and therefore, from the anisotropic part of the governing differential equation, a domain integral appears in the boundary integral equation. This domain integral is transformed into boundary integrals using Green's theorem with a polynomial function. The mathematical formulation of this approach for two-dimensional problems is presented in detail. The proposed solution is applied to two typical examples, and the validity and other numerical properties of the proposed BEM are demonstrated in the discussion of the results obtained.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用模拟方程法和格林定理的边界元法分析各向异性固体中二维稳态热传导
本文讨论了Katsikadelis和Nerantzaki提出的边界元法(BEM)、模拟方程法(AEM)和格林定理在各向异性固体稳态热传导分析中的应用。本研究从控制微分方程中提取各向同性固体稳态热传导的线性微分算子(拉普拉斯算子)。该积分方程采用了各向同性固体的拉普拉斯方程的基本解,因此,从控制微分方程的各向异性部分,在边界积分方程中出现了一个域积分。利用多项式函数的格林定理将域积分转化为边界积分。详细介绍了该方法在二维问题上的数学表达式。通过对两个典型算例的分析,验证了所提边界元法的有效性和其他数值性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and Optimization of a Gas Burner for TPV Application Experimental and Numerical Approaches for Reliability Evaluation of Electronic Packaging Two-Layer Viscous Shallow-Water Equations and Conservation Laws Lattice Boltzmann Simulation of Two-Phase Viscoelastic Fluid Flows An Inexact Balancing Preconditioner for Large-Scale Structural Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1