{"title":"What And Where To Focus In Person Search","authors":"Tong Zhou, Kun Tian","doi":"10.1109/ICASSP39728.2021.9414439","DOIUrl":null,"url":null,"abstract":"Person search aims to locate and identify the query person from a gallery of original scene images. Almost all previous methods only consider single high-level semantic information, ignoring that the essence of identification task is to learn rich and expressive features. Additionally, large pose variations and occlusions of the target person significantly increase the difficulty of search task. For these two findings, we first propose multilevel semantic aggregation algorithm for more discriminative feature descriptors. Then, a pose-assisted attention module is designed to highlight fine-grained area of the target and simultaneously capture valuable clues for identification. Extensive experiments confirm that our framework can coordinate multilevel semantics of persons and effectively alleviate the adverse effects of occlusion and various pose. We also achieve state-of-the-art performance on two challenging datasets CUHK-SYSU and PRW.","PeriodicalId":347060,"journal":{"name":"ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP39728.2021.9414439","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Person search aims to locate and identify the query person from a gallery of original scene images. Almost all previous methods only consider single high-level semantic information, ignoring that the essence of identification task is to learn rich and expressive features. Additionally, large pose variations and occlusions of the target person significantly increase the difficulty of search task. For these two findings, we first propose multilevel semantic aggregation algorithm for more discriminative feature descriptors. Then, a pose-assisted attention module is designed to highlight fine-grained area of the target and simultaneously capture valuable clues for identification. Extensive experiments confirm that our framework can coordinate multilevel semantics of persons and effectively alleviate the adverse effects of occlusion and various pose. We also achieve state-of-the-art performance on two challenging datasets CUHK-SYSU and PRW.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在个人搜索中关注什么和在哪里
人物搜索旨在从原始场景图像库中定位和识别查询人物。以往的方法几乎都只考虑单一的高级语义信息,而忽略了识别任务的本质是学习丰富而富有表现力的特征。此外,大的姿态变化和目标人的遮挡显著增加了搜索任务的难度。针对这两个发现,我们首先提出了针对更具判别性的特征描述符的多层语义聚合算法。然后,设计一个姿态辅助注意模块,突出目标的细粒度区域,同时捕捉有价值的线索进行识别。大量的实验证明,我们的框架可以协调人的多层语义,有效地缓解遮挡和各种姿势的不利影响。我们也在两个具有挑战性的数据集上取得了最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Subspace Oddity - Optimization on Product of Stiefel Manifolds for EEG Data Recognition of Dynamic Hand Gesture Based on Mm-Wave Fmcw Radar Micro-Doppler Signatures Multi-Decoder Dprnn: Source Separation for Variable Number of Speakers Topic-Aware Dialogue Generation with Two-Hop Based Graph Attention On The Accuracy Limit of Joint Time-Delay/Doppler/Acceleration Estimation with a Band-Limited Signal
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1