A new clustering approach to identify the values to query the deep web access forms

Yasser Saissi, A. Zellou, A. Idri
{"title":"A new clustering approach to identify the values to query the deep web access forms","authors":"Yasser Saissi, A. Zellou, A. Idri","doi":"10.1109/CATA.2018.8398666","DOIUrl":null,"url":null,"abstract":"The deep web is a huge part of the web only accessible by querying its access forms. To query these access forms, we need to know the possible values of each form field. But, some form fields have an undefined set of values and this makes their automatic query difficult or impossible. In this paper, we propose our new approach to identify the set of the possible values for these fields to query the deep web access forms. For this, we query first these fields with the values associated with the domain of the deep web source. After, we use the K-medoids clustering approach to classify these generated results in a K clusters. For this, our clustering approach uses the semantic similarity between these results. The elements of the generated clusters are used by our approach to define the set of the possible values of these analyzed fields. With this approach, we can apply efficient queries to all the fields of the deep web access forms and access the deep web information.","PeriodicalId":231024,"journal":{"name":"2018 4th International Conference on Computer and Technology Applications (ICCTA)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 4th International Conference on Computer and Technology Applications (ICCTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CATA.2018.8398666","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The deep web is a huge part of the web only accessible by querying its access forms. To query these access forms, we need to know the possible values of each form field. But, some form fields have an undefined set of values and this makes their automatic query difficult or impossible. In this paper, we propose our new approach to identify the set of the possible values for these fields to query the deep web access forms. For this, we query first these fields with the values associated with the domain of the deep web source. After, we use the K-medoids clustering approach to classify these generated results in a K clusters. For this, our clustering approach uses the semantic similarity between these results. The elements of the generated clusters are used by our approach to define the set of the possible values of these analyzed fields. With this approach, we can apply efficient queries to all the fields of the deep web access forms and access the deep web information.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种新的聚类方法来识别深网访问表单的值
深网是网络的很大一部分,只能通过查询其访问表单来访问。要查询这些访问表单,我们需要知道每个表单字段的可能值。但是,有些表单字段有一组未定义的值,这使得自动查询变得困难或不可能。在本文中,我们提出了一种新的方法来识别这些字段的可能值集,以查询深网访问表单。为此,我们首先用与深网源的域相关的值查询这些字段。之后,我们使用K-medoids聚类方法将这些生成的结果分类到K个聚类中。为此,我们的聚类方法使用这些结果之间的语义相似性。我们的方法使用生成的簇的元素来定义这些分析字段的可能值的集合。利用这种方法,我们可以对深网访问表单的所有字段进行高效的查询,并访问深网信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Classification of pornographic content on Twitter using support vector machine and Naive Bayes Concepts extraction in ontology learning using language patterns for better accuracy Automatically generate a specific human computer interaction from an interface diagram model The Triple Helix Model: University-industry-governments linkage web-based application recommendation systems for emerging commercial-base research State of the art of telepresence with a virtual reality headset
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1