Simulation and optimization of electric machine based on SIMULINK and genetic algorithm

Long Chen, Guoli Li, Xing Qi, Qunjing Wang
{"title":"Simulation and optimization of electric machine based on SIMULINK and genetic algorithm","authors":"Long Chen, Guoli Li, Xing Qi, Qunjing Wang","doi":"10.1109/ICIEA.2017.8282955","DOIUrl":null,"url":null,"abstract":"The setting of PID parameters is an extremely important problem in the field of automatic control. In this paper, a genetic algorithm is illustrated using MATLAB and SIMULINK to improve the dynamic performance of vector control induction motor. Combining SIMULINK with genetic algorithm shows the correctness and effectiveness of the model of SIMULINK system simulation, and verifies that the performance of the system vector parameters of genetic algorithm optimization of the control system is better than that of the conventional controller.","PeriodicalId":443463,"journal":{"name":"2017 12th IEEE Conference on Industrial Electronics and Applications (ICIEA)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 12th IEEE Conference on Industrial Electronics and Applications (ICIEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIEA.2017.8282955","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The setting of PID parameters is an extremely important problem in the field of automatic control. In this paper, a genetic algorithm is illustrated using MATLAB and SIMULINK to improve the dynamic performance of vector control induction motor. Combining SIMULINK with genetic algorithm shows the correctness and effectiveness of the model of SIMULINK system simulation, and verifies that the performance of the system vector parameters of genetic algorithm optimization of the control system is better than that of the conventional controller.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于SIMULINK和遗传算法的电机仿真与优化
PID参数整定是自动控制领域中一个极其重要的问题。本文利用MATLAB和SIMULINK对遗传算法进行了阐述,以改善矢量控制异步电动机的动态性能。将SIMULINK与遗传算法相结合,验证了SIMULINK系统仿真模型的正确性和有效性,并验证了遗传算法优化控制系统的系统矢量参数性能优于传统控制器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An evolutionary algorithm with 2-D encoding for image segmentation A neural network based place recognition technique for a crowded indoor environment Internet of Things (IoT) in E-commerce: For people with disabilities Predictive analytics for detecting sensor failure using autoregressive integrated moving average model Energy-controlled optimization algorithm for rechargeable unmanned aerial vehicle network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1