{"title":"Automated Enumeration and Classification of Bacteria in Fluorescent Microscopy Imagery","authors":"Yongjian Yu, Jue Wang","doi":"10.1109/LSC.2018.8572240","DOIUrl":null,"url":null,"abstract":"We present a system of techniques for automatic segmentation, quantification, and morphotype classification of vaginal bacteria from multi-band fluorescent microscopic imagery. Individual bacteria segmentation is accomplished via data pre-processing, blobness enhancement, thresholding, and multi-scale morphological decomposition. A new spotness feature is devised and extracted to effectively quantify bacterial morphotypes. A supervised classifier is trained on microscopic scans containing thousands of bacteria. Our approach is able to predict and segment bacteria with a high accuracy. The average classification error in terms of bacteria composition ratio is 6% relative to the ground-truth.","PeriodicalId":254835,"journal":{"name":"2018 IEEE Life Sciences Conference (LSC)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Life Sciences Conference (LSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LSC.2018.8572240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
We present a system of techniques for automatic segmentation, quantification, and morphotype classification of vaginal bacteria from multi-band fluorescent microscopic imagery. Individual bacteria segmentation is accomplished via data pre-processing, blobness enhancement, thresholding, and multi-scale morphological decomposition. A new spotness feature is devised and extracted to effectively quantify bacterial morphotypes. A supervised classifier is trained on microscopic scans containing thousands of bacteria. Our approach is able to predict and segment bacteria with a high accuracy. The average classification error in terms of bacteria composition ratio is 6% relative to the ground-truth.