Stochastic unit commitment via Progressive Hedging — extensive analysis of solution methods

Christos Ordoudis, P. Pinson, M. Zugno, J. Morales
{"title":"Stochastic unit commitment via Progressive Hedging — extensive analysis of solution methods","authors":"Christos Ordoudis, P. Pinson, M. Zugno, J. Morales","doi":"10.1109/PTC.2015.7232629","DOIUrl":null,"url":null,"abstract":"Owing to the massive deployment of renewable power production units over the last couple of decades, the use of stochastic optimization methods to solve the unit commitment problem has gained increasing attention. Solving stochastic unit commitment problems in large-scale power systems requires high computational power, as stochastic models are dramatically more complex than their deterministic counterparts. This paper provides new insight into the potential of Progressive Hedging to decrease the solution time of the stochastic unit commitment problem with a relatively small trade-off in terms of the suboptimality of the solution. Computational studies show that the run-time is at most half of what is needed to solve the original extensive formulation of the problem, when more than ten wind power scenarios are utilized. These studies demonstrate great potential for solving real-world stochastic unit commitment problems using the Progressive Hedging algorithm.","PeriodicalId":193448,"journal":{"name":"2015 IEEE Eindhoven PowerTech","volume":"2011 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Eindhoven PowerTech","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PTC.2015.7232629","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

Owing to the massive deployment of renewable power production units over the last couple of decades, the use of stochastic optimization methods to solve the unit commitment problem has gained increasing attention. Solving stochastic unit commitment problems in large-scale power systems requires high computational power, as stochastic models are dramatically more complex than their deterministic counterparts. This paper provides new insight into the potential of Progressive Hedging to decrease the solution time of the stochastic unit commitment problem with a relatively small trade-off in terms of the suboptimality of the solution. Computational studies show that the run-time is at most half of what is needed to solve the original extensive formulation of the problem, when more than ten wind power scenarios are utilized. These studies demonstrate great potential for solving real-world stochastic unit commitment problems using the Progressive Hedging algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过渐进式套期保值的随机单位承诺-解决方法的广泛分析
由于近几十年来可再生能源发电机组的大规模部署,利用随机优化方法解决机组承诺问题越来越受到人们的关注。由于随机模型比确定性模型复杂得多,求解大规模电力系统中的随机机组承诺问题需要很高的计算能力。本文对渐进式套期保值的潜力提供了新的见解,以减少随机单元承诺问题的解决时间,在解决方案的次优性方面具有相对较小的权衡。计算研究表明,当使用超过10种风力发电方案时,运行时间最多是解决问题原始广泛公式所需时间的一半。这些研究显示了使用渐进式套期保值算法解决现实世界随机单元承诺问题的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A two-stage random forest method for short-term load forecasting Real-time control of microgrids with explicit power setpoints: Unintentional islanding Warm-commissioning tool of the data chain of digital measurement systems Integration of renewable energy into grid system - the Sabah Green Grid Modeling the PEV traffic pattern in an urban environment with parking lots and charging stations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1