Vehicle shape approximation from motion for visual traffic surveillance

Gsk Fung, N. Yung, G. Pang
{"title":"Vehicle shape approximation from motion for visual traffic surveillance","authors":"Gsk Fung, N. Yung, G. Pang","doi":"10.1109/ITSC.2001.948729","DOIUrl":null,"url":null,"abstract":"In this paper, a vehicle shape approximation method based on the vehicle motion in a typical traffic image sequence is proposed. In the proposed method, instead of using the 2D image data directly, the intrinsic 3D data is estimated in a monocular image sequence. Given the binary vehicle mask and the camera parameters, the vehicle shape is estimated by the four stages shape approximation method. These stages include feature point extraction, feature point motion estimation between two consecutive frames, feature point height estimation from motion vector, and the 3D shape estimation based on the feature point height. We have tested our method using real world traffic image sequence and the vehicle height profile and dimensions are estimated to be reasonably close to the actual dimensions.","PeriodicalId":173372,"journal":{"name":"ITSC 2001. 2001 IEEE Intelligent Transportation Systems. Proceedings (Cat. No.01TH8585)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ITSC 2001. 2001 IEEE Intelligent Transportation Systems. Proceedings (Cat. No.01TH8585)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2001.948729","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

Abstract

In this paper, a vehicle shape approximation method based on the vehicle motion in a typical traffic image sequence is proposed. In the proposed method, instead of using the 2D image data directly, the intrinsic 3D data is estimated in a monocular image sequence. Given the binary vehicle mask and the camera parameters, the vehicle shape is estimated by the four stages shape approximation method. These stages include feature point extraction, feature point motion estimation between two consecutive frames, feature point height estimation from motion vector, and the 3D shape estimation based on the feature point height. We have tested our method using real world traffic image sequence and the vehicle height profile and dimensions are estimated to be reasonably close to the actual dimensions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于运动的车辆形状近似视觉交通监控
提出了一种基于典型交通图像序列中车辆运动特征的车辆形状逼近方法。在该方法中,不直接使用二维图像数据,而是在单眼图像序列中估计固有的三维数据。在给定二值车辆掩模和相机参数的情况下,采用四阶段形状逼近法估计车辆形状。这些阶段包括特征点提取、连续两帧之间的特征点运动估计、运动向量的特征点高度估计以及基于特征点高度的三维形状估计。我们使用真实世界的交通图像序列测试了我们的方法,估计车辆的高度轮廓和尺寸与实际尺寸相当接近。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Lessons learned in interfacing dynamic message signs with a trunked radio system Three approaches to the dynamic network loading problem The CarLink II pilot program: testing a commuter-based carsharing model Recent trends in automatic train controls Conflict detection and planar resolution for air traffic control
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1