{"title":"Detecting network attacks using behavioural models","authors":"J. Schafer, M. Drozd","doi":"10.1109/IDAACS.2011.6072871","DOIUrl":null,"url":null,"abstract":"In this paper we're dealing with the problem of detecting malware using behaviour model. For better malware description we have divided this model into two parts — malware spreading model and malware statistical behavioural model. Spreading models are typical epidemiological models like SI model, advanced SIR and SEIR models and empiric file spreading model. In statistical behavioural model we're describing characteristics of malware trojan communication and communication characteristics of a typical user, we're describing basic detection for both models (behavioural statistic and spreading), we're proposing some standard and specific countermeasures based on these models as same as possibility of detection of malware communication, attacks like DoS and Network scanning detection and detection of Malware propagation.","PeriodicalId":106306,"journal":{"name":"Proceedings of the 6th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IDAACS.2011.6072871","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper we're dealing with the problem of detecting malware using behaviour model. For better malware description we have divided this model into two parts — malware spreading model and malware statistical behavioural model. Spreading models are typical epidemiological models like SI model, advanced SIR and SEIR models and empiric file spreading model. In statistical behavioural model we're describing characteristics of malware trojan communication and communication characteristics of a typical user, we're describing basic detection for both models (behavioural statistic and spreading), we're proposing some standard and specific countermeasures based on these models as same as possibility of detection of malware communication, attacks like DoS and Network scanning detection and detection of Malware propagation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用行为模型检测网络攻击
本文研究了利用行为模型检测恶意软件的问题。为了更好地描述恶意软件,我们将该模型分为恶意软件传播模型和恶意软件统计行为模型两部分。传播模型是典型的流行病学模型,如SI模型、高级SIR和SEIR模型和经验文件传播模型。在统计行为模型中,我们描述了恶意软件木马的通信特征和典型用户的通信特征,我们描述了这两种模型的基本检测(行为统计和传播),我们基于这些模型提出了一些标准和具体的对策,如恶意软件通信的检测可能性,DoS攻击和网络扫描检测以及恶意软件传播的检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automated measurement system based on digital intertial sensors for the study of human body movement Assessment of probabilistic parameters of alarm security detectors taking uncertain noise into account Special areas detection on agricultural fields images using evaluations of local brightness variability Net Present Value (NPV) as a tool supporting effective project management Photoplethysmography detection by smartphone's videocamera
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1