Mask detection algorithm based on the improved YOLOv4 - tiny

Chenhuan Tang, Shiran Zhu, Meng Zhang, Jie Chen, Xingyi Guo
{"title":"Mask detection algorithm based on the improved YOLOv4 - tiny","authors":"Chenhuan Tang, Shiran Zhu, Meng Zhang, Jie Chen, Xingyi Guo","doi":"10.1117/12.2671703","DOIUrl":null,"url":null,"abstract":"Based on YOLOv4-tiny, A lightweight mask detection algorithm is presented. By replacing the CBL module in the backbone feature extraction network (CSPdarknet-tiny) and Yolo Head with Ghost module that reduces the parameters of the network model. By the combination of Ghost module, CBAM attention, SMU activation function, and BN layer, a lightweight attention mechanism residual module (GCS_Block) is designed, which is embedded into the backbone feature extraction network, improving the model extract mask feature level. The Kmeans++ method is used to perform anchor box clustering on the dataset in this thesis. The experimental results show that compared with YOLOv4-tiny, the MAP has increased from 74.02% to 86.77%, the parameter has decreased from 6,056,606 to 1,657,828. The memory size of the model is 5.6MB.","PeriodicalId":227528,"journal":{"name":"International Conference on Artificial Intelligence and Computer Engineering (ICAICE 2022)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Artificial Intelligence and Computer Engineering (ICAICE 2022)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2671703","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Based on YOLOv4-tiny, A lightweight mask detection algorithm is presented. By replacing the CBL module in the backbone feature extraction network (CSPdarknet-tiny) and Yolo Head with Ghost module that reduces the parameters of the network model. By the combination of Ghost module, CBAM attention, SMU activation function, and BN layer, a lightweight attention mechanism residual module (GCS_Block) is designed, which is embedded into the backbone feature extraction network, improving the model extract mask feature level. The Kmeans++ method is used to perform anchor box clustering on the dataset in this thesis. The experimental results show that compared with YOLOv4-tiny, the MAP has increased from 74.02% to 86.77%, the parameter has decreased from 6,056,606 to 1,657,828. The memory size of the model is 5.6MB.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于改进YOLOv4 - tiny的掩码检测算法
基于YOLOv4-tiny,提出了一种轻量级的掩码检测算法。通过将骨干特征提取网络(CSPdarknet-tiny)和Yolo Head中的CBL模块替换为Ghost模块,减少了网络模型的参数。结合Ghost模块、CBAM注意、SMU激活函数和BN层,设计了轻量级的注意机制残差模块(GCS_Block),并将其嵌入骨干特征提取网络中,提高了模型提取掩码特征的水平。本文采用kmeans++方法对数据集进行锚盒聚类。实验结果表明,与YOLOv4-tiny相比,MAP从74.02%提高到86.77%,参数从6,056,606降低到1,657,828。内存为5.6MB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hippocampus MRI diagnosis based on deep learning in application of preliminary screening of Alzheimer’s disease Global critic and local actor for campaign-tactic combat management in the joint operation simulation software Intelligent monitoring system of oil tank liquid level based on infrared thermal imaging Chinese named entity recognition incorporating syntactic information Object tracking based on foreground adaptive bounding box and motion state redetection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1