{"title":"A new cascade algorithm based on CRFs for recognizing Chinese verb-object collocation","authors":"Guiping Zhang, Zhichao Liu, Qiaoli Zhou, Dongfeng Cai, Jiao Cheng","doi":"10.1109/NLPKE.2010.5587828","DOIUrl":null,"url":null,"abstract":"This paper proposes a new cascade algorithm based on conditional random fields. The algorithm is applied to automatic recognition of Chinese verb-object collocation, and combined with a new sequence labeling of “ONIY”. Experiments compare identified results under two segmentations and part-of-speech tag sets. The comprehensive experimental results show that the best performance is 90.65 % in F-score over Tsinghua Treebank, and 82.00 % in F-score over the segmentation and part-of-speech tagging scheme of Peking University. Our experiments show that the proposed algorithm can greatly improve recognition accuracy of multi-nested collocation, and play a positive role on long distance collocation.","PeriodicalId":259975,"journal":{"name":"Proceedings of the 6th International Conference on Natural Language Processing and Knowledge Engineering(NLPKE-2010)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th International Conference on Natural Language Processing and Knowledge Engineering(NLPKE-2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NLPKE.2010.5587828","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes a new cascade algorithm based on conditional random fields. The algorithm is applied to automatic recognition of Chinese verb-object collocation, and combined with a new sequence labeling of “ONIY”. Experiments compare identified results under two segmentations and part-of-speech tag sets. The comprehensive experimental results show that the best performance is 90.65 % in F-score over Tsinghua Treebank, and 82.00 % in F-score over the segmentation and part-of-speech tagging scheme of Peking University. Our experiments show that the proposed algorithm can greatly improve recognition accuracy of multi-nested collocation, and play a positive role on long distance collocation.