An Imperfect Usage-Based Preventive Maintenance Planning Model for Railway Track Superstructures

F. Dinmohammadi, M. Shafiee, E. Zio
{"title":"An Imperfect Usage-Based Preventive Maintenance Planning Model for Railway Track Superstructures","authors":"F. Dinmohammadi, M. Shafiee, E. Zio","doi":"10.1115/imece2021-72955","DOIUrl":null,"url":null,"abstract":"\n Railway transport is considered one of the most reliable, comfortable and safest modes of travel for both freight and passengers. Rail infrastructure assets (such as tracks, bridges, earthworks, tunnels and drainage systems) must be inspected and maintained on a regular basis in order to ensure that transport services are delivered in compliance with contractual and legal obligations. The maintenance of railway track structures is preventive in nature and includes the repair or replacement of certain components at pre-determined time intervals (in terms of years of operation) and/or usage rates (in terms of gross tonnage). Maintenance actions such as grinding and stone-blowing either restore the track profile to its original condition, i.e., “as good as new (AGAN)”, leave the track in almost the same condition as it was in prior to the inspection, i.e., “as bad as old (ABAO)”, or restore the track condition to a state somewhere between AGAN and ABAO, i.e., the so-called imperfect maintenance. The effect of an imperfect maintenance is often characterized by two classes of models, namely, failure-intensity reduction and age-reduction. However, the impact of imperfect repair on assets’ usage has not yet been addressed in the literature. In this paper, a usage-based imperfect preventive maintenance (PM) planning model is proposed for railway track superstructures, where the effect of an imperfect maintenance is described by a reduced amount of total accumulated million gross tons (MGT) passed over the rail line. A constrained nonlinear programming model is formulated to optimize the maintenance interval (i.e., usage rate between consecutive PMs) and the degree (quality) of repair actions. The total mean maintenance cost for a Weibull failure distribution model is derived and, then, the conditions required to make PM actions beneficial are discussed. A numerical case example is provided to show the effectiveness of the proposed PM planning method over the track renewal and replacement policy.","PeriodicalId":146533,"journal":{"name":"Volume 13: Safety Engineering, Risk, and Reliability Analysis; Research Posters","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 13: Safety Engineering, Risk, and Reliability Analysis; Research Posters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2021-72955","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Railway transport is considered one of the most reliable, comfortable and safest modes of travel for both freight and passengers. Rail infrastructure assets (such as tracks, bridges, earthworks, tunnels and drainage systems) must be inspected and maintained on a regular basis in order to ensure that transport services are delivered in compliance with contractual and legal obligations. The maintenance of railway track structures is preventive in nature and includes the repair or replacement of certain components at pre-determined time intervals (in terms of years of operation) and/or usage rates (in terms of gross tonnage). Maintenance actions such as grinding and stone-blowing either restore the track profile to its original condition, i.e., “as good as new (AGAN)”, leave the track in almost the same condition as it was in prior to the inspection, i.e., “as bad as old (ABAO)”, or restore the track condition to a state somewhere between AGAN and ABAO, i.e., the so-called imperfect maintenance. The effect of an imperfect maintenance is often characterized by two classes of models, namely, failure-intensity reduction and age-reduction. However, the impact of imperfect repair on assets’ usage has not yet been addressed in the literature. In this paper, a usage-based imperfect preventive maintenance (PM) planning model is proposed for railway track superstructures, where the effect of an imperfect maintenance is described by a reduced amount of total accumulated million gross tons (MGT) passed over the rail line. A constrained nonlinear programming model is formulated to optimize the maintenance interval (i.e., usage rate between consecutive PMs) and the degree (quality) of repair actions. The total mean maintenance cost for a Weibull failure distribution model is derived and, then, the conditions required to make PM actions beneficial are discussed. A numerical case example is provided to show the effectiveness of the proposed PM planning method over the track renewal and replacement policy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种不完善的基于使用的铁路轨道上部结构预防性维修计划模型
铁路运输被认为是货运和旅客最可靠、最舒适、最安全的旅行方式之一。铁路基础设施资产(如轨道、桥梁、土方工程、隧道和排水系统)必须定期检查和维护,以确保运输服务的提供符合合同和法律义务。铁路轨道结构的维修保养属预防性质,包括按预先确定的时间间隔(以营运年数计)及/或使用率(以总吨位计)维修或更换某些部件。维修行动,如研磨和吹石,要么将轨道轮廓恢复到原始状态,即“与新一样好(AGAN)”,要么将轨道保持在几乎与检查前相同的状态,即“与旧一样坏(ABAO)”,要么将轨道状况恢复到介于AGAN和ABAO之间的状态,即所谓的不完美维护。不完美维护的影响通常有两类模型,即失效强度降低和老化降低。然而,不完善的修复对资产使用的影响尚未在文献中得到解决。本文提出了一种基于使用的轨道上部结构不完全预防性维修(PM)规划模型,其中不完全预防性维修的影响用总累积过线百万总吨(MGT)的减少量来描述。建立了一个约束非线性规划模型来优化维修间隔(即连续pm之间的使用率)和维修行动的程度(质量)。推导了威布尔故障分布模型的总平均维修成本,并讨论了使维修行动有益的条件。最后通过一个算例验证了该方法在轨道更新和更换策略方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Prediction Software to Evaluate Frisbee Movement An Imperfect Usage-Based Preventive Maintenance Planning Model for Railway Track Superstructures Development of Algorithms for Improving Fiber-Optical Rail Circuit on Railway Spans Design, Modeling, and Fabrication of a Ventilator Prototype - A Successful Student Project Story An Overview of the Research Landscape in the Field of Safe Machine Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1