Prediction of Large for Gestational Age Infants in Overweight and Obese Women at Approximately 20 Gestational Weeks

Yuhan Du, J. Mehegan, F. Mcauliffe, C. Mooney
{"title":"Prediction of Large for Gestational Age Infants in Overweight and Obese Women at Approximately 20 Gestational Weeks","authors":"Yuhan Du, J. Mehegan, F. Mcauliffe, C. Mooney","doi":"10.1145/3388440.3414906","DOIUrl":null,"url":null,"abstract":"Large for gestational age (LGA) births are associated with many maternal and perinatal complications. As overweight and obesity are risk factors for LGA, we aimed to predict LGA in overweight and obese women at approximately 20 gestational weeks, so that we can identify women at risk of LGA early to allow for appropriate interventions. A random forest algorithm was applied to maternal characteristics and blood biomarkers at baseline and 20 gestational weeks' ultrasound scan findings to develop a prediction model. Here we present our preliminary results demonstrating potential for use in clinical decision support for identifying patients early in pregnancy at risk of an LGA birth.","PeriodicalId":411338,"journal":{"name":"Proceedings of the 11th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3388440.3414906","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Large for gestational age (LGA) births are associated with many maternal and perinatal complications. As overweight and obesity are risk factors for LGA, we aimed to predict LGA in overweight and obese women at approximately 20 gestational weeks, so that we can identify women at risk of LGA early to allow for appropriate interventions. A random forest algorithm was applied to maternal characteristics and blood biomarkers at baseline and 20 gestational weeks' ultrasound scan findings to develop a prediction model. Here we present our preliminary results demonstrating potential for use in clinical decision support for identifying patients early in pregnancy at risk of an LGA birth.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超重和肥胖妇女约20孕周时胎龄儿大的预测
大胎龄(LGA)分娩与许多产妇和围产期并发症有关。由于超重和肥胖是LGA的危险因素,我们的目的是预测大约20孕周时超重和肥胖妇女的LGA,以便我们能够早期识别有LGA风险的妇女,以便采取适当的干预措施。将随机森林算法应用于母体特征和血液生物标志物的基线和妊娠20周超声扫描结果,建立预测模型。在这里,我们提出了我们的初步结果,证明了在临床决策支持中使用的潜力,以识别早期妊娠患者的LGA分娩风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
RA2Vec CanMod From Interatomic Distances to Protein Tertiary Structures with a Deep Convolutional Neural Network Prediction of Large for Gestational Age Infants in Overweight and Obese Women at Approximately 20 Gestational Weeks Using Patient Information for the Prediction of Caregiver Burden in Amyotrophic Lateral Sclerosis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1