Graph clustering using dirichlet process mixture model

I. Atastina, B. Sitohang, G. A. S. Putri, V. Moertini
{"title":"Graph clustering using dirichlet process mixture model","authors":"I. Atastina, B. Sitohang, G. A. S. Putri, V. Moertini","doi":"10.1109/ICODSE.2017.8285862","DOIUrl":null,"url":null,"abstract":"One of the problems or challenges in performing graph clustering is to determine the number of clusters that best fit to the data being processed. This study is proposing a method to solve the problem using Dirichlet Process Mixture Model (DPMM). DPMM is one of the statistical methods that is already used for data clustering, without the need to define the number of clusters. However, this method has never been used before for graph clustering. Therefore, this study proposes the adaptation so that DPMM can be used for graph clustering. Experiment result shows DPMM method can be used for graph clustering, by applying spectral theory.","PeriodicalId":366005,"journal":{"name":"2017 International Conference on Data and Software Engineering (ICoDSE)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Data and Software Engineering (ICoDSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICODSE.2017.8285862","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

One of the problems or challenges in performing graph clustering is to determine the number of clusters that best fit to the data being processed. This study is proposing a method to solve the problem using Dirichlet Process Mixture Model (DPMM). DPMM is one of the statistical methods that is already used for data clustering, without the need to define the number of clusters. However, this method has never been used before for graph clustering. Therefore, this study proposes the adaptation so that DPMM can be used for graph clustering. Experiment result shows DPMM method can be used for graph clustering, by applying spectral theory.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用dirichlet过程混合模型的图聚类
执行图聚类的问题或挑战之一是确定最适合正在处理的数据的聚类数量。本文提出了一种利用Dirichlet过程混合模型(DPMM)来解决这一问题的方法。DPMM是一种已经用于数据聚类的统计方法,不需要定义聚类的数量。然而,这种方法以前从未被用于图聚类。因此,本研究提出自适应方法,使DPMM可以用于图聚类。实验结果表明,DPMM方法可以应用谱理论进行图聚类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hybrid recommender system using random walk with restart for social tagging system Comparison of optimal path finding techniques for minimal diagnosis in mapping repair Cells identification of acute myeloid leukemia AML M0 and AML M1 using K-nearest neighbour based on morphological images Utility function based-mixed integer nonlinear programming (MINLP) problem model of information service pricing schemes Graph clustering using dirichlet process mixture model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1