Application of hybrid artificial neural network algorithm for the prediction of standardized precipitation index

Kavina S. Dayal, R. Deo, A. Apan
{"title":"Application of hybrid artificial neural network algorithm for the prediction of standardized precipitation index","authors":"Kavina S. Dayal, R. Deo, A. Apan","doi":"10.1109/TENCON.2016.7848588","DOIUrl":null,"url":null,"abstract":"The application of wavelet transformation has become a popular area of interest in hydrological modeling as it enables the use of spectral and temporal information contained in input data. Drought modeling is one such area that is still far from complete, considering the stochastic nature of drought characteristics per every drought events. This study therefore aims to predict a drought index, i.e. the Standardized Precipitation Index (SPI), using artificial neural network (ANN) and a hybrid ANN with wavelet analysis (WA-ANN) using four main inputs: precipitation, potential evapotranspiration, Southern Oscillation Index, and Nino 4 index for Brisbane, Australia. For WA-ANN, the four inputs were decomposed into three detail and one approximation levels using Daubechies-4 (db4) orthogonal mother wavelet. The evaluation of prediction performance showed that WA-ANN outperformed ANN model with an increased accuracy by 49.89% based on Root Mean Squared Error values.","PeriodicalId":246458,"journal":{"name":"2016 IEEE Region 10 Conference (TENCON)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Region 10 Conference (TENCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCON.2016.7848588","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

The application of wavelet transformation has become a popular area of interest in hydrological modeling as it enables the use of spectral and temporal information contained in input data. Drought modeling is one such area that is still far from complete, considering the stochastic nature of drought characteristics per every drought events. This study therefore aims to predict a drought index, i.e. the Standardized Precipitation Index (SPI), using artificial neural network (ANN) and a hybrid ANN with wavelet analysis (WA-ANN) using four main inputs: precipitation, potential evapotranspiration, Southern Oscillation Index, and Nino 4 index for Brisbane, Australia. For WA-ANN, the four inputs were decomposed into three detail and one approximation levels using Daubechies-4 (db4) orthogonal mother wavelet. The evaluation of prediction performance showed that WA-ANN outperformed ANN model with an increased accuracy by 49.89% based on Root Mean Squared Error values.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
混合人工神经网络算法在标准化降水指数预测中的应用
小波变换的应用已经成为水文建模的一个热门领域,因为它可以使用输入数据中包含的光谱和时间信息。考虑到每次干旱事件的干旱特征的随机性,干旱建模就是这样一个仍远未完成的领域。基于降水、潜在蒸散量、南方涛动指数和Nino 4指数4个主要输入,利用人工神经网络(ANN)和小波分析混合神经网络(WA-ANN)预测澳大利亚布里斯班的干旱指数,即标准化降水指数(SPI)。对于WA-ANN,使用Daubechies-4 (db4)正交母小波将四个输入分解为三个细节和一个近似水平。预测性能评价表明,基于均方根误差值,WA-ANN的预测精度比ANN模型提高了49.89%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
3D printing of a pavlova Application of hybrid artificial neural network algorithm for the prediction of standardized precipitation index GaN based μLED drive circuit for Visible Light Communication (VLC) with improved linearity using on-chip optical feedback Automatic image classification in intravascular optical coherence tomography images A rapid and reliable approach for optimal design of an electromagnetic nanopositioning actuator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1