A New Combination of Robust-possibilistic Mathematical Programming for Resilient Supply Chain Network under Disruptions and Uncertainty: A Real Supply Chain (RESEARCH NOTE)
{"title":"A New Combination of Robust-possibilistic Mathematical Programming for Resilient Supply Chain Network under Disruptions and Uncertainty: A Real Supply Chain (RESEARCH NOTE)","authors":"A. Hamidieh, A. Khamseh, B. Naderi","doi":"10.5829/ije.2018.31.04a.13","DOIUrl":null,"url":null,"abstract":"Nowadays, the design of a strategic supply chain network under disruption is one of the most important priorities of the governments. One of the strategic purposes of managers is to supply the sustainable agricultural products and food in stable conditions which require the production of soil nutrients. In this regard, some disruptions such as sanctions and natural disasters have a destructive effect on the supply of raw materials and the uncertainty of input parameters plays an undesirable impact on the decision-making levels including strategic, tactical, and operational levels. The present study introduced a new model of resilient supply chain network which was compatible with the realities of the structure of the supply chain for fertilizer in Iran. Notably, the effectiveness of the designed system was promoted by the dominant strategies of reliability. Further, a new robust possibilistic approach was proposed which guaranteed the optimality and feasibility robustness through the efficient solution to deal with the parametric uncertainty. Finally, the results showed that the proposed new robust possibilistic combination promoted the optimality robustness and its effectiveness using an optimal average cost and minimum standard deviation.","PeriodicalId":416886,"journal":{"name":"International journal of engineering. Transactions A: basics","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of engineering. Transactions A: basics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5829/ije.2018.31.04a.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Nowadays, the design of a strategic supply chain network under disruption is one of the most important priorities of the governments. One of the strategic purposes of managers is to supply the sustainable agricultural products and food in stable conditions which require the production of soil nutrients. In this regard, some disruptions such as sanctions and natural disasters have a destructive effect on the supply of raw materials and the uncertainty of input parameters plays an undesirable impact on the decision-making levels including strategic, tactical, and operational levels. The present study introduced a new model of resilient supply chain network which was compatible with the realities of the structure of the supply chain for fertilizer in Iran. Notably, the effectiveness of the designed system was promoted by the dominant strategies of reliability. Further, a new robust possibilistic approach was proposed which guaranteed the optimality and feasibility robustness through the efficient solution to deal with the parametric uncertainty. Finally, the results showed that the proposed new robust possibilistic combination promoted the optimality robustness and its effectiveness using an optimal average cost and minimum standard deviation.