Detection of Epileptic Seizures Using Video Data

K. Cuppens, B. Vanrumste, B. Ceulemans, L. Lagae, S. Huffel
{"title":"Detection of Epileptic Seizures Using Video Data","authors":"K. Cuppens, B. Vanrumste, B. Ceulemans, L. Lagae, S. Huffel","doi":"10.1109/IE.2010.77","DOIUrl":null,"url":null,"abstract":"Monitoring of epileptic patients is usually done by video/EEG-monitoring which is considered as the golden standard. Due to some disadvantages of this method, this method is not feasible to use in long term home monitoring. Video monitoring provides a solution to this problem as it can monitor the patient in a non-contacting way. An algorithm is developed to detect movement epochs in nocturnal datasets for pediatric epileptic patients. The performance was measured using a threefold crossvaildation, which resulted in a sensitivity of 1 and a positive predictive value above 0.85.","PeriodicalId":180375,"journal":{"name":"2010 Sixth International Conference on Intelligent Environments","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Sixth International Conference on Intelligent Environments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IE.2010.77","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Monitoring of epileptic patients is usually done by video/EEG-monitoring which is considered as the golden standard. Due to some disadvantages of this method, this method is not feasible to use in long term home monitoring. Video monitoring provides a solution to this problem as it can monitor the patient in a non-contacting way. An algorithm is developed to detect movement epochs in nocturnal datasets for pediatric epileptic patients. The performance was measured using a threefold crossvaildation, which resulted in a sensitivity of 1 and a positive predictive value above 0.85.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用视频数据检测癫痫发作
对癫痫患者的监测通常采用视频/脑电图监测,这被认为是黄金标准。由于这种方法的一些缺点,这种方法在长期的家庭监控中是不可行的。视频监控为这一问题提供了一个解决方案,因为它可以以非接触的方式监控患者。开发了一种算法来检测儿童癫痫患者夜间数据集的运动时间。使用三重交叉方差测量性能,结果灵敏度为1,阳性预测值高于0.85。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic Analysis of Geotagged Photos for Intelligent Tourist Services A Reflection of Current Search Engine Techniques on Medical Search Environments Situative Space Tracking within Smart Environments Detection of Epileptic Seizures Using Video Data From Digital to Ubiquitous Cities: Defining a Common Architecture for Urban Development
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1