Wireless integrated circuit for 100-channel neural stimulation

B. Thurgood, N. M. Ledbetter, David J. Warren, Gregory A. Clark, Reid R. Harrison
{"title":"Wireless integrated circuit for 100-channel neural stimulation","authors":"B. Thurgood, N. M. Ledbetter, David J. Warren, Gregory A. Clark, Reid R. Harrison","doi":"10.1109/BIOCAS.2008.4696891","DOIUrl":null,"url":null,"abstract":"We present the design of an integrated circuit for wireless neural stimulation, along with bench-top and in-vivo experimental results. The chip has the ability to drive 100 individual stimulation electrodes with constant-current pulses of varying amplitude, duration, interphasic delay, and repetition rate. The stimulation is done using a biphasic (cathodic and anodic) current source, injecting and retracting charge from the nervous system. Wireless communication and power are achieved over a 2.765-MHz inductive link. Only two off-chip components are needed to operate the stimulator: a 10-nF capacitor to aid in power supply regulation and a coil for power and command reception. The chip was fabricated in a commercially available 0.6-mum 2P3M BiCMOS process. The chip was able to activate motor fibers to produce muscle twitches via a Utah Slanted Electrode Array implanted in cat sciatic nerve, and to activate sensory fibers to recruit evoked potentials in somatosensory cortex.","PeriodicalId":415200,"journal":{"name":"2008 IEEE Biomedical Circuits and Systems Conference","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Biomedical Circuits and Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOCAS.2008.4696891","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

We present the design of an integrated circuit for wireless neural stimulation, along with bench-top and in-vivo experimental results. The chip has the ability to drive 100 individual stimulation electrodes with constant-current pulses of varying amplitude, duration, interphasic delay, and repetition rate. The stimulation is done using a biphasic (cathodic and anodic) current source, injecting and retracting charge from the nervous system. Wireless communication and power are achieved over a 2.765-MHz inductive link. Only two off-chip components are needed to operate the stimulator: a 10-nF capacitor to aid in power supply regulation and a coil for power and command reception. The chip was fabricated in a commercially available 0.6-mum 2P3M BiCMOS process. The chip was able to activate motor fibers to produce muscle twitches via a Utah Slanted Electrode Array implanted in cat sciatic nerve, and to activate sensory fibers to recruit evoked potentials in somatosensory cortex.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于100通道神经刺激的无线集成电路
我们提出了一种用于无线神经刺激的集成电路的设计,以及实验台上和体内的实验结果。该芯片能够驱动100个具有不同振幅、持续时间、相间延迟和重复率的恒流脉冲的单独刺激电极。刺激是使用双相(阴极和阳极)电流源,从神经系统注入和收回电荷。无线通信和电源是在2.765 mhz的感应链路上实现的。操作刺激器只需要两个片外组件:一个用于电源调节的10-nF电容器和一个用于电源和命令接收的线圈。该芯片采用市售的0.6 μ m 2P3M BiCMOS工艺制造。通过植入猫坐骨神经的犹他倾斜电极阵列,该芯片能够激活运动纤维产生肌肉抽搐,并激活感觉纤维以招募体感觉皮层的诱发电位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A wireless neural interface for chronic recording Development of novel SAW devices in CMOS technology for biosensor applications An efficient wireless power link for high voltage retinal implant FPGA implementation of 4-channel ICA for on-line EEG signal separation Pressure detection and wireless interface for patient bed
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1