B. Thurgood, N. M. Ledbetter, David J. Warren, Gregory A. Clark, Reid R. Harrison
{"title":"Wireless integrated circuit for 100-channel neural stimulation","authors":"B. Thurgood, N. M. Ledbetter, David J. Warren, Gregory A. Clark, Reid R. Harrison","doi":"10.1109/BIOCAS.2008.4696891","DOIUrl":null,"url":null,"abstract":"We present the design of an integrated circuit for wireless neural stimulation, along with bench-top and in-vivo experimental results. The chip has the ability to drive 100 individual stimulation electrodes with constant-current pulses of varying amplitude, duration, interphasic delay, and repetition rate. The stimulation is done using a biphasic (cathodic and anodic) current source, injecting and retracting charge from the nervous system. Wireless communication and power are achieved over a 2.765-MHz inductive link. Only two off-chip components are needed to operate the stimulator: a 10-nF capacitor to aid in power supply regulation and a coil for power and command reception. The chip was fabricated in a commercially available 0.6-mum 2P3M BiCMOS process. The chip was able to activate motor fibers to produce muscle twitches via a Utah Slanted Electrode Array implanted in cat sciatic nerve, and to activate sensory fibers to recruit evoked potentials in somatosensory cortex.","PeriodicalId":415200,"journal":{"name":"2008 IEEE Biomedical Circuits and Systems Conference","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Biomedical Circuits and Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOCAS.2008.4696891","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
We present the design of an integrated circuit for wireless neural stimulation, along with bench-top and in-vivo experimental results. The chip has the ability to drive 100 individual stimulation electrodes with constant-current pulses of varying amplitude, duration, interphasic delay, and repetition rate. The stimulation is done using a biphasic (cathodic and anodic) current source, injecting and retracting charge from the nervous system. Wireless communication and power are achieved over a 2.765-MHz inductive link. Only two off-chip components are needed to operate the stimulator: a 10-nF capacitor to aid in power supply regulation and a coil for power and command reception. The chip was fabricated in a commercially available 0.6-mum 2P3M BiCMOS process. The chip was able to activate motor fibers to produce muscle twitches via a Utah Slanted Electrode Array implanted in cat sciatic nerve, and to activate sensory fibers to recruit evoked potentials in somatosensory cortex.