Support vector machine for data on manifolds: An application to image analysis

S. Sen, M. Foskey, J. Marron, M. Styner
{"title":"Support vector machine for data on manifolds: An application to image analysis","authors":"S. Sen, M. Foskey, J. Marron, M. Styner","doi":"10.1109/ISBI.2008.4541216","DOIUrl":null,"url":null,"abstract":"The Support Vector Machine (SVM) is a powerful tool for classification. We generalize SVM to work with data objects that are naturally understood to be lying on curved manifolds, and not in the usual d-dimensional Euclidean space. Such data arise from medial representations (m-reps) in medical images, Diffusion Tensor-MRI (DT-MRI), diffeomorphisms, etc. Considering such data objects to be embedded in higher dimensional Euclidean space results in invalid projections (on the separating direction) while Kernel Embedding does not provide a natural separating direction. We use geodesic distances, defined on the manifold to formulate our methodology. This approach addresses the important issue of analyzing the change that accompanies the difference between groups by implicitly defining the notions of separating surface and separating direction on the manifold. The methods are applied in shape analysis with target data being m-reps of 3 dimensional medical images.","PeriodicalId":184204,"journal":{"name":"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"120 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2008.4541216","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

The Support Vector Machine (SVM) is a powerful tool for classification. We generalize SVM to work with data objects that are naturally understood to be lying on curved manifolds, and not in the usual d-dimensional Euclidean space. Such data arise from medial representations (m-reps) in medical images, Diffusion Tensor-MRI (DT-MRI), diffeomorphisms, etc. Considering such data objects to be embedded in higher dimensional Euclidean space results in invalid projections (on the separating direction) while Kernel Embedding does not provide a natural separating direction. We use geodesic distances, defined on the manifold to formulate our methodology. This approach addresses the important issue of analyzing the change that accompanies the difference between groups by implicitly defining the notions of separating surface and separating direction on the manifold. The methods are applied in shape analysis with target data being m-reps of 3 dimensional medical images.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
流形上数据的支持向量机:在图像分析中的应用
支持向量机(SVM)是一种强大的分类工具。我们将支持向量机推广到那些自然被理解为位于弯曲流形上的数据对象,而不是在通常的d维欧几里德空间中。这些数据来自医学图像中的中间表示(m-reps)、扩散张量- mri (DT-MRI)、微分同态等。考虑到将这些数据对象嵌入到高维欧几里德空间中会导致无效的投影(在分离方向上),而核嵌入没有提供自然的分离方向。我们使用在流形上定义的测地线距离来制定我们的方法。这种方法通过隐式地定义流形上的分离表面和分离方向的概念,解决了分析组间差异所伴随的变化的重要问题。将该方法应用于目标数据为三维医学图像m-代表的形状分析中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
EEG source localization by multi-planar analytic sensing 3D general lesion segmentation in CT Automated grading of breast cancer histopathology using spectral clustering with textural and architectural image features Iterative nonlinear least squares algorithms for direct reconstruction of parametric images from dynamic PET Pathological image segmentation for neuroblastoma using the GPU
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1