Machine Learning para la mejora de la experiencia con MOOC: el caso de la Universitat Politècnica de València

Jorge Angel Martínez Navarro, Ignacio Despujol Zabala
{"title":"Machine Learning para la mejora de la experiencia con MOOC: el caso de la Universitat Politècnica de València","authors":"Jorge Angel Martínez Navarro, Ignacio Despujol Zabala","doi":"10.6018/RIITE.466251","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to design a proposal for automated mechanisms based on machine learning to improve the experience of participants in MOOC courses at the Universitat Politecnica de Valencia and reduce dropout rates. Following a desing based research DBR design, in which pedagogical decisions have always been prioritised over data analytics, three iterations have been carried out with different methodological patterns (systematic literature review, machine learning based on data from 260 courses and 700.000 students, and creation of automated mechanisms) that always end with the presentation of results and feedback from the university team. The main conclusions of this work indicate that, of the twenty-five pedagogical dropout indicators referred to by the literature reviews in iteration 1, only ten of them are validated with UPV courses (no automated or automatable data are available for the others), and of those finally only six of them are possible predictors of student dropout, with the data used. Finally, a set of automated mechanisms are proposed to be applied in the university's EdX platform to improve the user experience and reduce the dropout rate in the courses.","PeriodicalId":151153,"journal":{"name":"Revista Interuniversitaria de Investigación en Tecnología Educativa","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Interuniversitaria de Investigación en Tecnología Educativa","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6018/RIITE.466251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The aim of this paper is to design a proposal for automated mechanisms based on machine learning to improve the experience of participants in MOOC courses at the Universitat Politecnica de Valencia and reduce dropout rates. Following a desing based research DBR design, in which pedagogical decisions have always been prioritised over data analytics, three iterations have been carried out with different methodological patterns (systematic literature review, machine learning based on data from 260 courses and 700.000 students, and creation of automated mechanisms) that always end with the presentation of results and feedback from the university team. The main conclusions of this work indicate that, of the twenty-five pedagogical dropout indicators referred to by the literature reviews in iteration 1, only ten of them are validated with UPV courses (no automated or automatable data are available for the others), and of those finally only six of them are possible predictors of student dropout, with the data used. Finally, a set of automated mechanisms are proposed to be applied in the university's EdX platform to improve the user experience and reduce the dropout rate in the courses.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
本文的目的是设计一种基于机器学习的自动化机制,以改善瓦伦西亚理工大学MOOC课程参与者的体验,并降低辍学率。在基于设计的研究DBR设计中,教学决策始终优先于数据分析,使用不同的方法模式进行了三次迭代(系统文献综述,基于260门课程和70万名学生的数据的机器学习,以及自动化机制的创建),这些迭代总是以大学团队的结果和反馈为结束。这项工作的主要结论表明,在迭代1的文献综述中提到的25个教学辍学指标中,只有10个通过UPV课程进行了验证(其他的没有自动化或可自动化的数据),最后只有6个是学生辍学的可能预测因素,使用的数据。最后,提出了一套自动化机制,应用于大学的EdX平台,以提高用户体验,降低课程辍学率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
La revolución de la Inteligencia Artificial en tiempos de negacionismo tecnológico Órganos plastinados: recursos para una propuesta de innovación educativa STEM en Educación Secundaria Percepción docente respecto al uso de Classdojo con familias Innovación TIC en los Planes de Estudio de las Menciones de Música en los Grados de Educación en España Inteligencia Artificial y Machine Learning como recurso educativo desde la perspectiva de docentes en distintas etapas educativas no universitarias
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1