Yixuan Yuan, Wenjian Qin, Xiaoqing Guo, M. Buyyounouski, S. Hancock, B. Han, L. Xing
{"title":"Prostate Segmentation with Encoder-Decoder Densely Connected Convolutional Network (Ed-Densenet)","authors":"Yixuan Yuan, Wenjian Qin, Xiaoqing Guo, M. Buyyounouski, S. Hancock, B. Han, L. Xing","doi":"10.1109/ISBI.2019.8759498","DOIUrl":null,"url":null,"abstract":"Prostate cancer is a leading cause of mortality among men. Prostate segmentation of Magnetic Resonance (MR) images plays a critical role in treatment planning and image guided interventions. However, manual delineation of prostate is very time-consuming and subjects to large inter-observer variations. To deal with this problem, we proposed a novel Encoder-Decoder Densely Connected Convolutional Network (ED-DenseNet) to segment prostate region automatically. Our model consists of two interconnected pathways, a dense encoder pathway, which learns discriminative high-level image features and a dense decoder pathway, which predicts the final segmentation in the pixel level. Instead of using the convolutional network as the basic unit in the encoder-decoder framework, we utilize Densely Connected Convolutional Network (DenseNet) to preserve the maximum information flow among layers by a densely-connected mechanism. In addition, a novel loss function that jointly considers the encoder-decoder reconstruction error and the prediction error is proposed to optimize the feature learning and segmentation result. Our automatic segmentation result shows high agreement (DSC 87.14%) to the clinical segmentation results by experienced radiation oncologists. In addition, comparison with state-of-the-art methods shows that our ED-DenseNet model is superior in segmentation performance.","PeriodicalId":119935,"journal":{"name":"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2019.8759498","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28
Abstract
Prostate cancer is a leading cause of mortality among men. Prostate segmentation of Magnetic Resonance (MR) images plays a critical role in treatment planning and image guided interventions. However, manual delineation of prostate is very time-consuming and subjects to large inter-observer variations. To deal with this problem, we proposed a novel Encoder-Decoder Densely Connected Convolutional Network (ED-DenseNet) to segment prostate region automatically. Our model consists of two interconnected pathways, a dense encoder pathway, which learns discriminative high-level image features and a dense decoder pathway, which predicts the final segmentation in the pixel level. Instead of using the convolutional network as the basic unit in the encoder-decoder framework, we utilize Densely Connected Convolutional Network (DenseNet) to preserve the maximum information flow among layers by a densely-connected mechanism. In addition, a novel loss function that jointly considers the encoder-decoder reconstruction error and the prediction error is proposed to optimize the feature learning and segmentation result. Our automatic segmentation result shows high agreement (DSC 87.14%) to the clinical segmentation results by experienced radiation oncologists. In addition, comparison with state-of-the-art methods shows that our ED-DenseNet model is superior in segmentation performance.