Mayank Goel, Elliot Saba, Maia Stiber, Eric Whitmire, Josh Fromm, Eric C. Larson, G. Borriello, Shwetak N. Patel
{"title":"SpiroCall: Measuring Lung Function over a Phone Call","authors":"Mayank Goel, Elliot Saba, Maia Stiber, Eric Whitmire, Josh Fromm, Eric C. Larson, G. Borriello, Shwetak N. Patel","doi":"10.1145/2858036.2858401","DOIUrl":null,"url":null,"abstract":"Cost and accessibility have impeded the adoption of spirometers (devices that measure lung function) outside clinical settings, especially in low-resource environments. Prior work, called SpiroSmart, used a smartphone's built-in microphone as a spirometer. However, individuals in low- or middle-income countries do not typically have access to the latest smartphones. In this paper, we investigate how spirometry can be performed from any phone-using the standard telephony voice channel to transmit the sound of the spirometry effort. We also investigate how using a 3D printed vortex whistle can affect the accuracy of common spirometry measures and mitigate usability challenges. Our system, coined SpiroCall, was evaluated with 50 participants against two gold standard medical spirometers. We conclude that SpiroCall has an acceptable mean error with or without a whistle for performing spirometry, and advantages of each are discussed.","PeriodicalId":169608,"journal":{"name":"Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"59","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2858036.2858401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 59
Abstract
Cost and accessibility have impeded the adoption of spirometers (devices that measure lung function) outside clinical settings, especially in low-resource environments. Prior work, called SpiroSmart, used a smartphone's built-in microphone as a spirometer. However, individuals in low- or middle-income countries do not typically have access to the latest smartphones. In this paper, we investigate how spirometry can be performed from any phone-using the standard telephony voice channel to transmit the sound of the spirometry effort. We also investigate how using a 3D printed vortex whistle can affect the accuracy of common spirometry measures and mitigate usability challenges. Our system, coined SpiroCall, was evaluated with 50 participants against two gold standard medical spirometers. We conclude that SpiroCall has an acceptable mean error with or without a whistle for performing spirometry, and advantages of each are discussed.