{"title":"Approximating fractional multicommodity flow independent of the number of commodities","authors":"L. Fleischer","doi":"10.1109/SFFCS.1999.814573","DOIUrl":null,"url":null,"abstract":"We describe fully polynomial time approximation schemes for various multicommodity flow problems in graphs with m edges and n vertices. We present the first approximation scheme for maximum multicommodity flow that is independent of the number of commodities k, and our algorithm improves upon the runtime of previous algorithms by this factor of k, running in O*(/spl epsiv//sup -2/ m/sup 2/) time. For maximum concurrent flow, and minimum cost concurrent flow, we present algorithms that are faster than the current known algorithms when the graph is sparse or the number of commodities k is large, i.e. k>m/n. Our algorithms build on the framework proposed by Garg and Konemann (1998). They are simple, deterministic, and for the versions without costs, they are strongly polynomial. Our maximum multicommodity flow algorithm extends to an approximation scheme for the maximum weighted multicommodity flow, which is faster than those implied by previous algorithms by a factor of k/log W where W is the maximum weight of a commodity.","PeriodicalId":385047,"journal":{"name":"40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1999-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"357","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFFCS.1999.814573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 357
Abstract
We describe fully polynomial time approximation schemes for various multicommodity flow problems in graphs with m edges and n vertices. We present the first approximation scheme for maximum multicommodity flow that is independent of the number of commodities k, and our algorithm improves upon the runtime of previous algorithms by this factor of k, running in O*(/spl epsiv//sup -2/ m/sup 2/) time. For maximum concurrent flow, and minimum cost concurrent flow, we present algorithms that are faster than the current known algorithms when the graph is sparse or the number of commodities k is large, i.e. k>m/n. Our algorithms build on the framework proposed by Garg and Konemann (1998). They are simple, deterministic, and for the versions without costs, they are strongly polynomial. Our maximum multicommodity flow algorithm extends to an approximation scheme for the maximum weighted multicommodity flow, which is faster than those implied by previous algorithms by a factor of k/log W where W is the maximum weight of a commodity.