Visualising Time-evolving Semantic Biomedical Data

Arnaldo Pereira, João Rafael Almeida, Rui Pedro Lopes, J. L. Oliveira
{"title":"Visualising Time-evolving Semantic Biomedical Data","authors":"Arnaldo Pereira, João Rafael Almeida, Rui Pedro Lopes, J. L. Oliveira","doi":"10.1109/CBMS55023.2022.00053","DOIUrl":null,"url":null,"abstract":"Today, medical studies enable a deeper understanding of health conditions, diseases and treatments, helping to improve medical care services. In observational studies, an adequate selection of datasets is important, to ensure the study's success and the quality of the results obtained. During the feasibility study phase, inclusion and exclusion criteria are defined, together with specific database characteristics to construct the cohort. However, it is not easy to compare database characteristics and their evolution over time during this selection. Data comparisons can be made using the data properties and aggregations, but the inclusion of temporal information becomes more complex due to the continuous evolution of concepts over time. In this paper, we propose two visualisation methods aiming for a better description of data evolution in clinical registers using biomedical standard vocabularies.","PeriodicalId":218475,"journal":{"name":"2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS55023.2022.00053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Today, medical studies enable a deeper understanding of health conditions, diseases and treatments, helping to improve medical care services. In observational studies, an adequate selection of datasets is important, to ensure the study's success and the quality of the results obtained. During the feasibility study phase, inclusion and exclusion criteria are defined, together with specific database characteristics to construct the cohort. However, it is not easy to compare database characteristics and their evolution over time during this selection. Data comparisons can be made using the data properties and aggregations, but the inclusion of temporal information becomes more complex due to the continuous evolution of concepts over time. In this paper, we propose two visualisation methods aiming for a better description of data evolution in clinical registers using biomedical standard vocabularies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
可视化时间演化的语义生物医学数据
今天,医学研究使人们能够更深入地了解健康状况、疾病和治疗方法,有助于改善医疗保健服务。在观察性研究中,充分选择数据集是重要的,以确保研究的成功和所获得结果的质量。在可行性研究阶段,定义纳入和排除标准,以及特定的数据库特征来构建队列。但是,在此选择过程中比较数据库特征及其随时间的演变并不容易。可以使用数据属性和聚合进行数据比较,但是由于概念随着时间的推移而不断演变,因此包含时间信息变得更加复杂。在本文中,我们提出了两种可视化方法,旨在使用生物医学标准词汇更好地描述临床登记册中的数据演变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ultrasonic Carotid Blood Flow Velocimetry Based on Deep Complex Neural Network Graph-based Regional Feature Enhancing for Abdominal Multi-Organ Segmentation in CT Exploiting AI to make insulin pens smart: injection site recognition and lipodystrophy detection Subgroup Discovery Analysis of Treatment Patterns in Lung Cancer Patients Estimating Predictive Uncertainty in Gastrointestinal Polyp Segmentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1