{"title":"Combining Methods to Stabilize and Increase Performance of Neural Network-Based Classifiers","authors":"Fabricio A. Breve, M. Ponti, N. Mascarenhas","doi":"10.1109/SIBGRAPI.2005.19","DOIUrl":null,"url":null,"abstract":"In this paper we present a set of experiments in order to recognize materials in multispectral images, which were obtained with a tomograph scanner. These images were classified by a neural network based classifier (Multilayer Perceptron) and classifier combining techniques (Bagging, Decision Templates and Dempster-Shafer) were investigated. We also present a performance comparison between the individual classifiers and the combiners. The results were evaluated by the estimated error (obtained using the Hold-Out technique) and the Kappa coefficient, and they showed performance stabilization.","PeriodicalId":193103,"journal":{"name":"XVIII Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI'05)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"XVIII Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIBGRAPI.2005.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
In this paper we present a set of experiments in order to recognize materials in multispectral images, which were obtained with a tomograph scanner. These images were classified by a neural network based classifier (Multilayer Perceptron) and classifier combining techniques (Bagging, Decision Templates and Dempster-Shafer) were investigated. We also present a performance comparison between the individual classifiers and the combiners. The results were evaluated by the estimated error (obtained using the Hold-Out technique) and the Kappa coefficient, and they showed performance stabilization.