{"title":"An application of particle filter for FDI oriented change detection and bounded parameter estimation","authors":"P. Cofré, A. Cipriano","doi":"10.23919/ECC.2007.7068891","DOIUrl":null,"url":null,"abstract":"In their original formulations, state estimation schemes such as Kalman Filter, do not allow the incorporation of prior information on their physical bounds. This results in a certain probability of generating estimates that are physically impossible. Also, the Gaussian assumption in conventional schemes produces a trade-off between estimation error and estimation speed. This paper presents a solution based on a particle filter for which a bounded a priori parameter distribution is chosen. It is shown that a Beta distribution with hard bounds and adaptive estimation variance can overcome both drawbacks, thus achieving a lower fault detection time delay without increasing the estimation error, compared with the Extended Kalman Filter.","PeriodicalId":407048,"journal":{"name":"2007 European Control Conference (ECC)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 European Control Conference (ECC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ECC.2007.7068891","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In their original formulations, state estimation schemes such as Kalman Filter, do not allow the incorporation of prior information on their physical bounds. This results in a certain probability of generating estimates that are physically impossible. Also, the Gaussian assumption in conventional schemes produces a trade-off between estimation error and estimation speed. This paper presents a solution based on a particle filter for which a bounded a priori parameter distribution is chosen. It is shown that a Beta distribution with hard bounds and adaptive estimation variance can overcome both drawbacks, thus achieving a lower fault detection time delay without increasing the estimation error, compared with the Extended Kalman Filter.