Maximum Likelihood estimation of state space models from frequency domain data

A. Wills, B. Ninness, S. Gibson
{"title":"Maximum Likelihood estimation of state space models from frequency domain data","authors":"A. Wills, B. Ninness, S. Gibson","doi":"10.1109/TAC.2008.2009485","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of estimating linear time invariant models from observed frequency domain data. Here an emphasis is placed on deriving numerically robust and efficient methods that can reliably deal with high order models over wide bandwidths. This involves a novel application of the Expectation-Maximisation (EM) algorithm in order to find Maximum Likelihood estimates of state space structures. An empirical study using both simulated and real measurement data is presented to illustrate the efficacy of the EM-based method derived here.","PeriodicalId":407048,"journal":{"name":"2007 European Control Conference (ECC)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"59","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 European Control Conference (ECC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAC.2008.2009485","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 59

Abstract

This paper addresses the problem of estimating linear time invariant models from observed frequency domain data. Here an emphasis is placed on deriving numerically robust and efficient methods that can reliably deal with high order models over wide bandwidths. This involves a novel application of the Expectation-Maximisation (EM) algorithm in order to find Maximum Likelihood estimates of state space structures. An empirical study using both simulated and real measurement data is presented to illustrate the efficacy of the EM-based method derived here.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于频域数据的状态空间模型的最大似然估计
本文研究了从频域观测数据估计线性时不变模型的问题。这里的重点放在推导数值鲁棒和有效的方法,可以可靠地处理高阶模型在宽的带宽。这涉及到期望最大化(EM)算法的新应用,以找到状态空间结构的最大似然估计。利用模拟和真实测量数据进行的实证研究表明,本文推导的基于电磁的方法是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Maximum Likelihood estimation of state space models from frequency domain data Output feedback H∞ control of continuous-time infinite Markovian jump linear systems via LMI methods Visual servoing of a parallel robot system Comparison between SOS approach and Slack Variable approach for non-negativity check of polynomial functions: Multiple variable case Integrating Hamiltonian systems defined on the Lie groups SO(4) and SO(1,3)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1