{"title":"Lattice-based designs of direct sum codebooks for vector quantization","authors":"C. Barrett, R. L. Frost","doi":"10.1109/DCC.1995.515546","DOIUrl":null,"url":null,"abstract":"Summary form only given. A direct sum codebook (DSC) has the potential to reduce both memory and computational costs of vector quantization. A DSC consists of several sets or stages of vectors. An equivalent code vector is made from the direct sum of one vector from each stage. Such a structure, with p stages containing m vectors each, has m/sup p/ equivalent code vectors, while requiring the storage of only mp vectors. DSC quantizers are not only memory efficient, they also have a naturally simple encoding algorithm, called a residual encoding. A residual encoding uses the nearest neighbor at each stage, requiring comparison with mp vectors rather than all m/sup p/ possible combinations. Unfortunately, this encoding algorithm is suboptimal because of a problem called entanglement. Entanglement occurs when a different vector from that obtained by a residual encoding is actually a better fit for the input vector. An optimal encoding can be obtained by an exhaustive search, but this sacrifices the savings in computation. Lattice-based DSC quantizers are designed to be optimal under a residual encoding by avoiding entanglement Successive stages of the codebook produce finer and finer partitions of the space, resulting in equivalent code vectors which are points in a truncated lattice. After the initial design, the codebook can be optimized for a given source, increasing performance beyond that of a simple lattice vector quantizer. Experimental results show that DSC quantizers based on cubical lattices perform as well as exhaustive search quantizers on a scalar source.","PeriodicalId":107017,"journal":{"name":"Proceedings DCC '95 Data Compression Conference","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings DCC '95 Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.1995.515546","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Summary form only given. A direct sum codebook (DSC) has the potential to reduce both memory and computational costs of vector quantization. A DSC consists of several sets or stages of vectors. An equivalent code vector is made from the direct sum of one vector from each stage. Such a structure, with p stages containing m vectors each, has m/sup p/ equivalent code vectors, while requiring the storage of only mp vectors. DSC quantizers are not only memory efficient, they also have a naturally simple encoding algorithm, called a residual encoding. A residual encoding uses the nearest neighbor at each stage, requiring comparison with mp vectors rather than all m/sup p/ possible combinations. Unfortunately, this encoding algorithm is suboptimal because of a problem called entanglement. Entanglement occurs when a different vector from that obtained by a residual encoding is actually a better fit for the input vector. An optimal encoding can be obtained by an exhaustive search, but this sacrifices the savings in computation. Lattice-based DSC quantizers are designed to be optimal under a residual encoding by avoiding entanglement Successive stages of the codebook produce finer and finer partitions of the space, resulting in equivalent code vectors which are points in a truncated lattice. After the initial design, the codebook can be optimized for a given source, increasing performance beyond that of a simple lattice vector quantizer. Experimental results show that DSC quantizers based on cubical lattices perform as well as exhaustive search quantizers on a scalar source.