Embedded vision system for monitoring arc welding with thermal imaging and deep learning

A. Fernández, Álvaro Souto, C. González, Roi Méndez-Rial
{"title":"Embedded vision system for monitoring arc welding with thermal imaging and deep learning","authors":"A. Fernández, Álvaro Souto, C. González, Roi Méndez-Rial","doi":"10.1109/COINS49042.2020.9191650","DOIUrl":null,"url":null,"abstract":"We develop a novel embedded vision system for online monitoring of arc welding with thermal imaging. The thermal images are able to provide clear information of the melt pool and surrounding areas during the welding process. We propose a deep learning processing pipeline with a CNNLSTM architecture for the detection and classification of defects based on video sequences. The experimental results show that the CNN-LSTM architecture is able to model the complex dynamics of the welding process and detect and classify defects with high accuracy. In addition, the embedded vision system implements an OPC-UA server, enabling an easy vertical and horizontal integration in Industry 4.0.","PeriodicalId":350108,"journal":{"name":"2020 International Conference on Omni-layer Intelligent Systems (COINS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Omni-layer Intelligent Systems (COINS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COINS49042.2020.9191650","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

We develop a novel embedded vision system for online monitoring of arc welding with thermal imaging. The thermal images are able to provide clear information of the melt pool and surrounding areas during the welding process. We propose a deep learning processing pipeline with a CNNLSTM architecture for the detection and classification of defects based on video sequences. The experimental results show that the CNN-LSTM architecture is able to model the complex dynamics of the welding process and detect and classify defects with high accuracy. In addition, the embedded vision system implements an OPC-UA server, enabling an easy vertical and horizontal integration in Industry 4.0.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于热成像和深度学习的弧焊监测嵌入式视觉系统
我们开发了一种新的嵌入式视觉系统,用于热成像弧焊的在线监测。在焊接过程中,热图像能够提供熔池和周围区域的清晰信息。我们提出了一种基于CNNLSTM架构的深度学习处理管道,用于基于视频序列的缺陷检测和分类。实验结果表明,CNN-LSTM结构能够对焊接过程的复杂动态进行建模,并能以较高的精度对缺陷进行检测和分类。此外,嵌入式视觉系统实现了OPC-UA服务器,可在工业4.0中轻松实现垂直和水平集成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Embedded vision system for monitoring arc welding with thermal imaging and deep learning Human Activity Recognition: From Sensors to Applications Cold Start in Serverless Computing: Current Trends and Mitigation Strategies COINS 2020 TOC Deployment of Application Microservices in Multi-Domain Federated Fog Environments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1