Achieving Thermal-Resiliency for Multicore Hard-Real-Time Systems

P. Hettiarachchi, N. Fisher, L. Wang
{"title":"Achieving Thermal-Resiliency for Multicore Hard-Real-Time Systems","authors":"P. Hettiarachchi, N. Fisher, L. Wang","doi":"10.1109/ECRTS.2013.15","DOIUrl":null,"url":null,"abstract":"Multicore processor based system designs are increasingly utilized as the processing platform for complex hard-real-time and embedded applications. These real-time systems need to operate under various physical and design constraints. Much research has focused on thermal-aware real-time systems designs. However, no results exist to investigate the resource allocation and the system degradation under external thermal constraints in a predictable manner. This paper proposes a control-theoretic framework to ensure hard-real-time deadlines on a multiprocessor platform in a dynamic thermal environment. We use real-time performance modes to permit the system to adapt to changing conditions. Also, we show how the system designer can use our framework to allocate asymmetric processing resources upon a multicore CPU and still maintain thermal constraints. We develop analysis for determining what modes the system can support for a given external thermal condition. Our system design extends the derivation of thermal-resiliency (originally proposed for uniprocessor systems) to multicore systems and determines the limitations of external thermal stress that any hard-real-time performance mode can withstand. Simulations and physical test bed results show that our algorithm predicts how a system will gracefully and predictably degrade under external thermal stress.","PeriodicalId":247550,"journal":{"name":"2013 25th Euromicro Conference on Real-Time Systems","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 25th Euromicro Conference on Real-Time Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECRTS.2013.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Multicore processor based system designs are increasingly utilized as the processing platform for complex hard-real-time and embedded applications. These real-time systems need to operate under various physical and design constraints. Much research has focused on thermal-aware real-time systems designs. However, no results exist to investigate the resource allocation and the system degradation under external thermal constraints in a predictable manner. This paper proposes a control-theoretic framework to ensure hard-real-time deadlines on a multiprocessor platform in a dynamic thermal environment. We use real-time performance modes to permit the system to adapt to changing conditions. Also, we show how the system designer can use our framework to allocate asymmetric processing resources upon a multicore CPU and still maintain thermal constraints. We develop analysis for determining what modes the system can support for a given external thermal condition. Our system design extends the derivation of thermal-resiliency (originally proposed for uniprocessor systems) to multicore systems and determines the limitations of external thermal stress that any hard-real-time performance mode can withstand. Simulations and physical test bed results show that our algorithm predicts how a system will gracefully and predictably degrade under external thermal stress.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
实现多核硬实时系统的热弹性
基于多核处理器的系统设计越来越多地被用作复杂的硬实时和嵌入式应用的处理平台。这些实时系统需要在各种物理和设计约束下运行。许多研究都集中在热感知实时系统的设计上。然而,对于外部热约束下的资源分配和系统退化,目前还没有可预测的研究结果。本文提出了一个控制理论框架,以确保动态热环境下多处理器平台上的硬实时时限。我们使用实时性能模式,使系统能够适应不断变化的条件。此外,我们还展示了系统设计人员如何使用我们的框架在多核CPU上分配非对称处理资源,同时仍然保持热约束。我们开发的分析,以确定什么模式的系统可以支持给定的外部热条件。我们的系统设计将热弹性的推导(最初提出用于单处理器系统)扩展到多核系统,并确定任何硬实时性能模式都可以承受的外部热应力的限制。仿真和物理试验台结果表明,我们的算法可以预测系统在外部热应力下如何优雅地和可预测地退化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Achieving Thermal-Resiliency for Multicore Hard-Real-Time Systems Analysis of Probabilistic Cache Related Pre-emption Delays Reducing Tardiness under Global Scheduling by Splitting Jobs The Optimality of PFPasap Algorithm for Fixed-Priority Energy-Harvesting Real-Time Systems Suspension-Aware Analysis for Hard Real-Time Multiprocessor Scheduling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1