Performance analysis of supervised machine learning algorithms for text classification

Sadia Zaman Mishu, S M Rafiuddin
{"title":"Performance analysis of supervised machine learning algorithms for text classification","authors":"Sadia Zaman Mishu, S M Rafiuddin","doi":"10.1109/ICCITECHN.2016.7860233","DOIUrl":null,"url":null,"abstract":"The demand of text classification is growing significantly in web searching, data mining, web ranking, recommendation systems and so many other fields of information and technology. This paper illustrates the text classification process on different dataset using some standard supervised machine learning techniques. Text documents can be classified through various kinds of classifiers. Labeled text documents are used to classify the text in supervised classifications. This paper applied these classifiers on different kinds of labeled documents and measures the accuracy of the classifiers. An Artificial Neural Network (ANN) model using Back Propagation Network (BPN) is used with several other models to create an independent platform for labeled and supervised text classification process. An existing benchmark approach is used to analysis the performance of classification using labeled documents. Experimental analysis on real data reveals which model works well in terms of classification accuracy.","PeriodicalId":287635,"journal":{"name":"2016 19th International Conference on Computer and Information Technology (ICCIT)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 19th International Conference on Computer and Information Technology (ICCIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCITECHN.2016.7860233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

The demand of text classification is growing significantly in web searching, data mining, web ranking, recommendation systems and so many other fields of information and technology. This paper illustrates the text classification process on different dataset using some standard supervised machine learning techniques. Text documents can be classified through various kinds of classifiers. Labeled text documents are used to classify the text in supervised classifications. This paper applied these classifiers on different kinds of labeled documents and measures the accuracy of the classifiers. An Artificial Neural Network (ANN) model using Back Propagation Network (BPN) is used with several other models to create an independent platform for labeled and supervised text classification process. An existing benchmark approach is used to analysis the performance of classification using labeled documents. Experimental analysis on real data reveals which model works well in terms of classification accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
文本分类中监督式机器学习算法的性能分析
在网页搜索、数据挖掘、网页排名、推荐系统等众多信息技术领域,对文本分类的需求日益增长。本文用一些标准的监督机器学习技术说明了在不同数据集上的文本分类过程。文本文档可以通过各种分类器进行分类。标记文本文档用于在监督分类中对文本进行分类。本文将这些分类器应用于不同类型的标注文档,并测量了分类器的准确率。利用反向传播网络(BPN)的人工神经网络(ANN)模型与其他模型一起创建了一个独立的平台,用于标记和监督文本分类过程。利用已有的基准方法分析了标记文档分类的性能。通过对实际数据的实验分析,揭示了哪种模型在分类精度方面效果较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modeling of solar photovoltaic system using MATLAB/Simulink Traffic sign recognition using hybrid features descriptor and artificial neural network classifier Accuracy analysis of recommendation system using singular value decomposition Performance analysis of supervised machine learning algorithms for text classification Fatigue testing of MEMS device developed by MetalMUMPs fabrication process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1