E. Ratnasari, M. Mentari, Ratih Kartika Dewi, R. V. Hari Ginardi
{"title":"Sugarcane leaf disease detection and severity estimation based on segmented spots image","authors":"E. Ratnasari, M. Mentari, Ratih Kartika Dewi, R. V. Hari Ginardi","doi":"10.1109/ICTS.2014.7010564","DOIUrl":null,"url":null,"abstract":"About 15% of sugarcane leaf is defective because of diseases, it reduces the quantity and quality of sugarcane production significantly. Early detection and estimation of plant disease is a way to control these diseases and minimize the severe infection. This paper proposes a model to identify the severity of certain spot disease which appear on leaves based on segmented spot. The segmented spot is obtained by thresholding a* component of L*a*b* color space. Diseases spots are extracted with maximum standard deviation of segmented spot that use for detection the type of disease using classification techniques. The classifier is a Support Vector Machine (SVM) which uses L*a*b* color space for its color features and Gray Level Co-Occurrence Matrix (GLCM) as its texture features. This proposed model capable to determine the types of spot diseases with accuracy of 80% and 5.73 error severity estimation average.","PeriodicalId":325095,"journal":{"name":"Proceedings of International Conference on Information, Communication Technology and System (ICTS) 2014","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of International Conference on Information, Communication Technology and System (ICTS) 2014","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTS.2014.7010564","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34
Abstract
About 15% of sugarcane leaf is defective because of diseases, it reduces the quantity and quality of sugarcane production significantly. Early detection and estimation of plant disease is a way to control these diseases and minimize the severe infection. This paper proposes a model to identify the severity of certain spot disease which appear on leaves based on segmented spot. The segmented spot is obtained by thresholding a* component of L*a*b* color space. Diseases spots are extracted with maximum standard deviation of segmented spot that use for detection the type of disease using classification techniques. The classifier is a Support Vector Machine (SVM) which uses L*a*b* color space for its color features and Gray Level Co-Occurrence Matrix (GLCM) as its texture features. This proposed model capable to determine the types of spot diseases with accuracy of 80% and 5.73 error severity estimation average.