Evaluation of an indoor localization system for a mobile robot

V. Jiménez, C. Schwarzl, Helmut Martin
{"title":"Evaluation of an indoor localization system for a mobile robot","authors":"V. Jiménez, C. Schwarzl, Helmut Martin","doi":"10.1109/ICCVE45908.2019.8965234","DOIUrl":null,"url":null,"abstract":"Although indoor localization has been a wide researched topic, obtained results may not fit the requirements that some domains need. Most approaches are not able to precisely localize a fast moving object even with a complex installation, which makes their implementation in the automated driving domain complicated. In this publication, common technologies were analyzed and a commercial product, called Marvelmind Indoor GPS, was chosen for our use case in which both ultrasound and radio frequency communications are used. The evaluation is given in a first moment on small indoor scenarios with static and moving objects. Further tests were done on wider areas, where the system is integrated within our Robotics Operating System (ROS)-based self-developed “Smart PhysIcal Demonstration and evaluation Robot (SPIDER)” and the results of these outdoor tests are compared with the obtained localization by the installed GPS on the robot. Finally, the next steps to improve the results in further developments are discussed.","PeriodicalId":384049,"journal":{"name":"2019 IEEE International Conference on Connected Vehicles and Expo (ICCVE)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Connected Vehicles and Expo (ICCVE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCVE45908.2019.8965234","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Although indoor localization has been a wide researched topic, obtained results may not fit the requirements that some domains need. Most approaches are not able to precisely localize a fast moving object even with a complex installation, which makes their implementation in the automated driving domain complicated. In this publication, common technologies were analyzed and a commercial product, called Marvelmind Indoor GPS, was chosen for our use case in which both ultrasound and radio frequency communications are used. The evaluation is given in a first moment on small indoor scenarios with static and moving objects. Further tests were done on wider areas, where the system is integrated within our Robotics Operating System (ROS)-based self-developed “Smart PhysIcal Demonstration and evaluation Robot (SPIDER)” and the results of these outdoor tests are compared with the obtained localization by the installed GPS on the robot. Finally, the next steps to improve the results in further developments are discussed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
移动机器人室内定位系统的评价
虽然室内定位是一个广泛的研究课题,但得到的结果可能不符合某些领域的要求。大多数方法即使安装复杂,也无法精确定位快速移动的物体,这使得它们在自动驾驶领域的实现变得复杂。在本出版物中,分析了常用技术,并为我们的用例选择了一种称为Marvelmind室内GPS的商业产品,其中使用了超声波和射频通信。首先对具有静态和移动物体的小型室内场景进行评估。在更广阔的区域进行了进一步的测试,将该系统集成到我们基于机器人操作系统(ROS)的自主开发的“智能物理演示和评估机器人(SPIDER)”中,并将这些室外测试的结果与安装在机器人上的GPS获得的定位结果进行了比较。最后,讨论了在进一步发展中改进结果的下一步步骤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evaluating Automotive Antennas for Cellular Radio Communications Online validity monitor for vehicle dynamics models Multi-actuated ground vehicle tyre force estimation through a coupled 1D simulation-estimation framework Evaluation of an indoor localization system for a mobile robot Applications and Trends in Connected Vehicles: Debates and Conclusions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1