Application of neural network and principal component analysis to GPR data

M. F. Pantoja, Jesus B. Rodriguez, A. Bretones, C. M. de Jong, S. Garcia, R. Martín, D. Vieira
{"title":"Application of neural network and principal component analysis to GPR data","authors":"M. F. Pantoja, Jesus B. Rodriguez, A. Bretones, C. M. de Jong, S. Garcia, R. Martín, D. Vieira","doi":"10.1109/IWAGPR.2011.5963854","DOIUrl":null,"url":null,"abstract":"This communication presents a prediction algorithm for the detection of features in GPR-based surveys. Based on signal processing and soft-computing techniques, the coupled use of principal-component analysis and neural networks enables a definition of an efficient method for analyzing GPR electromagnetic data. Results for detecting features of geological layers demonstrate not only the accuracy of the predictions of the method but also the simple interpretation of its output through reconstructed images of the scenarios.","PeriodicalId":130006,"journal":{"name":"2011 6th International Workshop on Advanced Ground Penetrating Radar (IWAGPR)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 6th International Workshop on Advanced Ground Penetrating Radar (IWAGPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWAGPR.2011.5963854","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This communication presents a prediction algorithm for the detection of features in GPR-based surveys. Based on signal processing and soft-computing techniques, the coupled use of principal-component analysis and neural networks enables a definition of an efficient method for analyzing GPR electromagnetic data. Results for detecting features of geological layers demonstrate not only the accuracy of the predictions of the method but also the simple interpretation of its output through reconstructed images of the scenarios.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
神经网络与主成分分析在探地雷达数据中的应用
本文提出了一种基于gpr的调查特征检测的预测算法。基于信号处理和软计算技术,将主成分分析和神经网络相结合,定义了一种有效的探地雷达电磁数据分析方法。探测地质层特征的结果不仅证明了该方法预测的准确性,而且通过场景的重建图像对其输出进行了简单的解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
“Spurious” analysis of a wide bandwidth undersampled digitally heterodyned SFGPR Recursive integration CFS-PML for GPR FDTD modelling Application of neural network and principal component analysis to GPR data Experimental studies of subsurface target discrimination using a phase-based microwave imaging method GPR prospecting in Renaissance and baroque monuments in Lecce (Southern Italy)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1