Using Twitter Content to Predict Psychopathy

Randall Wald, T. Khoshgoftaar, Amri Napolitano, Chris Sumner
{"title":"Using Twitter Content to Predict Psychopathy","authors":"Randall Wald, T. Khoshgoftaar, Amri Napolitano, Chris Sumner","doi":"10.1109/ICMLA.2012.228","DOIUrl":null,"url":null,"abstract":"An ever-growing number of users share their thoughts and experiences using the Twitter micro logging service. Although sometimes dismissed as containing too little content to convey significant information, these messages can be combined to build a larger picture of the user posting them. One particularly notable personality trait which can be discovered this way is psychopathy: the tendency for disregarding others and the rule of society. In this paper, we explore techniques to apply data mining towards the goal of identifying those who score in the top 1.4% of a well-known psychopathy metric using information available from their Twitter accounts. We apply a newly-proposed form of ensemble learning, Select RUSBoost (which adds feature selection to our earlier imbalance-aware ensemble in order to resolve high dimensionality), employ four classification learners, and use four feature selection techniques. The results show that when using the optimal choices of techniques, we are able to achieve an AUC value of 0.736. Furthermore, these results were only achieved when using the Select RUSBoost technique, demonstrating the importance of feature selection, data sampling, and ensemble learning. Overall, we show that data mining can be a valuable tool for law enforcement and others interested in identifying abnormal psychiatric states from Twitter data.","PeriodicalId":157399,"journal":{"name":"2012 11th International Conference on Machine Learning and Applications","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"67","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 11th International Conference on Machine Learning and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2012.228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 67

Abstract

An ever-growing number of users share their thoughts and experiences using the Twitter micro logging service. Although sometimes dismissed as containing too little content to convey significant information, these messages can be combined to build a larger picture of the user posting them. One particularly notable personality trait which can be discovered this way is psychopathy: the tendency for disregarding others and the rule of society. In this paper, we explore techniques to apply data mining towards the goal of identifying those who score in the top 1.4% of a well-known psychopathy metric using information available from their Twitter accounts. We apply a newly-proposed form of ensemble learning, Select RUSBoost (which adds feature selection to our earlier imbalance-aware ensemble in order to resolve high dimensionality), employ four classification learners, and use four feature selection techniques. The results show that when using the optimal choices of techniques, we are able to achieve an AUC value of 0.736. Furthermore, these results were only achieved when using the Select RUSBoost technique, demonstrating the importance of feature selection, data sampling, and ensemble learning. Overall, we show that data mining can be a valuable tool for law enforcement and others interested in identifying abnormal psychiatric states from Twitter data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用推特内容预测精神病
越来越多的用户使用Twitter微日志服务来分享他们的想法和经历。虽然有时因为内容太少而无法传达重要信息而被忽略,但这些消息可以组合起来构建一个更大的用户发布图片。可以通过这种方式发现的一个特别值得注意的人格特征是精神病:无视他人和社会规则的倾向。在本文中,我们探索了应用数据挖掘的技术,目的是利用Twitter账户中提供的信息,识别出那些在一个众所周知的精神病指标中得分最高的1.4%的人。我们应用了一种新提出的集成学习形式,选择RUSBoost(它将特征选择添加到我们早期的不平衡感知集成中,以解决高维问题),使用四个分类学习器,并使用四种特征选择技术。结果表明,当使用最优选择的技术时,我们可以实现0.736的AUC值。此外,这些结果只有在使用Select RUSBoost技术时才能实现,这表明了特征选择、数据采样和集成学习的重要性。总的来说,我们表明数据挖掘对于执法人员和其他有兴趣从Twitter数据中识别异常精神状态的人来说是一个有价值的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Excitation Current Forecasting for Reactive Power Compensation in Synchronous Motors: A Data Mining Approach Deep Structure Learning: Beyond Connectionist Approaches Using Twitter Content to Predict Psychopathy A Hybrid Approach to Coping with High Dimensionality and Class Imbalance for Software Defect Prediction O-linked Glycosylation Site Prediction Using Ensemble of Graphical Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1