Reconfigurable Logical Cells Using a Maximum Sensibility Neural Network

Manuel Ortiz Salazar, L. Torres-Treviño
{"title":"Reconfigurable Logical Cells Using a Maximum Sensibility Neural Network","authors":"Manuel Ortiz Salazar, L. Torres-Treviño","doi":"10.1109/MICAI.2014.23","DOIUrl":null,"url":null,"abstract":"In the present article was implemented a maximum sensibility neural network in a reconfigurable logical electronic structure (cell) in which different basic logical functions and combinational logic circuits as comparators, multiplexers and encoders are obtained. This neural network has advantages like easy implementation and a quick learning based on manipulation of the information in place of a gradient algorithm. The reconfiguration of the cell it will realized by modifying one specific input that will change de logical function.","PeriodicalId":189896,"journal":{"name":"2014 13th Mexican International Conference on Artificial Intelligence","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 13th Mexican International Conference on Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MICAI.2014.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the present article was implemented a maximum sensibility neural network in a reconfigurable logical electronic structure (cell) in which different basic logical functions and combinational logic circuits as comparators, multiplexers and encoders are obtained. This neural network has advantages like easy implementation and a quick learning based on manipulation of the information in place of a gradient algorithm. The reconfiguration of the cell it will realized by modifying one specific input that will change de logical function.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用最大灵敏度神经网络的可重构逻辑单元
本文在可重构的逻辑电子结构(单元)中实现了一个最大灵敏度的神经网络,其中获得了作为比较器、多路复用器和编码器的不同基本逻辑功能和组合逻辑电路。这种神经网络具有易于实现和快速学习的优点,它基于对信息的操纵来代替梯度算法。单元的重新配置将通过修改一个特定的输入来实现,这将改变其逻辑功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sharing and Reusing Context Information in Ubiquitous Computing Environments Reconfigurable Logical Cells Using a Maximum Sensibility Neural Network Enhanced Knowledge Discovery Approach in Textual Case Based Reasoning Mining Academic Data Using Visual Patterns Development of an Ontologies System for Spatial Biomedical Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1