Editorial: Focus on disordered, self-assembled neuromorphic systems

Z. Kuncic, T. Nakayama, J. Gimzewski
{"title":"Editorial: Focus on disordered, self-assembled neuromorphic systems","authors":"Z. Kuncic, T. Nakayama, J. Gimzewski","doi":"10.1088/2634-4386/ac91a0","DOIUrl":null,"url":null,"abstract":"\n This NCE Focus Issue is motivated by the intriguingly neuromorphic properties of many-body systems self-assembled from nanoscale elementary components. The rationale behind this is that biological neural networks, including in particular their nanoscale synapses, are formed by bottom-up self-assembly, rather than top-down design. Self-assembled nanosystems inherit a disordered network structure and the nonlinear interactions between the networked elements can give rise to emergent properties, as espoused by the legendary Nobel laureate Phillip W. Anderson in his famous article “More is Different” (Science 177, 393, 1972).","PeriodicalId":198030,"journal":{"name":"Neuromorphic Computing and Engineering","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuromorphic Computing and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2634-4386/ac91a0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This NCE Focus Issue is motivated by the intriguingly neuromorphic properties of many-body systems self-assembled from nanoscale elementary components. The rationale behind this is that biological neural networks, including in particular their nanoscale synapses, are formed by bottom-up self-assembly, rather than top-down design. Self-assembled nanosystems inherit a disordered network structure and the nonlinear interactions between the networked elements can give rise to emergent properties, as espoused by the legendary Nobel laureate Phillip W. Anderson in his famous article “More is Different” (Science 177, 393, 1972).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
社论:关注无序的、自组装的神经形态系统
这个NCE焦点问题的动机是由纳米级基本组件自组装的多体系统的有趣的神经形态特性。这背后的基本原理是,生物神经网络,特别是它们的纳米级突触,是由自下而上的自组装形成的,而不是自上而下的设计。自组装纳米系统继承了无序的网络结构,网络元素之间的非线性相互作用可以产生涌现特性,正如诺贝尔奖传奇获得者Phillip W. Anderson在他著名的文章“More is Different”(Science 177, 393, 1972)中所支持的那样。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.90
自引率
0.00%
发文量
0
期刊最新文献
Difficulties and approaches in enabling learning-in-memory using crossbar arrays of memristors A liquid optical memristor using photochromic effect and capillary effect Tissue-like interfacing of planar electrochemical organic neuromorphic devices Implementation of two-step gradual reset scheme for enhancing state uniformity of 2D hBN-based memristors for image processing Modulating short-term and long-term plasticity of polymer-based artificial synapses for neuromorphic computing and beyond
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1