Modulating short-term and long-term plasticity of polymer-based artificial synapses for neuromorphic computing and beyond

Ui-Chan Jeong, Jun-Seok Ro, Hea-Lim Park, Tae-Woo Lee
{"title":"Modulating short-term and long-term plasticity of polymer-based artificial synapses for neuromorphic computing and beyond","authors":"Ui-Chan Jeong, Jun-Seok Ro, Hea-Lim Park, Tae-Woo Lee","doi":"10.1088/2634-4386/ad5eb5","DOIUrl":null,"url":null,"abstract":"\n Neuromorphic devices that emulate biological neural systems have been actively studied to overcome the limitations of conventional von Neumann computing structure. Implementing various synaptic characteristics and decay time in the devices is important for various wearable neuromorphic applications. Polymer-based artificial synapses have been proposed as a solution to satisfy these requirements. Owing to the characteristics of polymer conjugated materials, such as easily tunable optical/electrical properties, mechanical flexibility, and biocompatibility, polymer-based synaptic devices are investigated to demonstrate their ultimate applications replicating biological nervous systems. In this review, we discuss various synaptic properties of artificial synaptic devices, including the operating mechanisms of synaptic devices. Furthermore, we review recent studies on polymer-based synaptic devices, focusing on strategies that modulate synaptic plasticity and synaptic decay time by changing the polymer structure and fabrication process. Finally, we show how the modulation of the synaptic properties can be applied to three major categories of these devices, including neuromorphic computing, artificial synaptic devices with sensing functions, and artificial nerves for neuroprostheses.","PeriodicalId":198030,"journal":{"name":"Neuromorphic Computing and Engineering","volume":"67 s306","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuromorphic Computing and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2634-4386/ad5eb5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Neuromorphic devices that emulate biological neural systems have been actively studied to overcome the limitations of conventional von Neumann computing structure. Implementing various synaptic characteristics and decay time in the devices is important for various wearable neuromorphic applications. Polymer-based artificial synapses have been proposed as a solution to satisfy these requirements. Owing to the characteristics of polymer conjugated materials, such as easily tunable optical/electrical properties, mechanical flexibility, and biocompatibility, polymer-based synaptic devices are investigated to demonstrate their ultimate applications replicating biological nervous systems. In this review, we discuss various synaptic properties of artificial synaptic devices, including the operating mechanisms of synaptic devices. Furthermore, we review recent studies on polymer-based synaptic devices, focusing on strategies that modulate synaptic plasticity and synaptic decay time by changing the polymer structure and fabrication process. Finally, we show how the modulation of the synaptic properties can be applied to three major categories of these devices, including neuromorphic computing, artificial synaptic devices with sensing functions, and artificial nerves for neuroprostheses.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
调节基于聚合物的人工突触的短期和长期可塑性,实现神经形态计算及其他功能
人们一直在积极研究模拟生物神经系统的神经形态设备,以克服传统冯-诺依曼计算结构的局限性。在设备中实现各种突触特性和衰减时间对于各种可穿戴神经形态应用非常重要。为了满足这些要求,人们提出了基于聚合物的人工突触解决方案。由于聚合物共轭材料具有易于调节的光学/电学特性、机械柔性和生物相容性等特点,人们对基于聚合物的突触设备进行了研究,以展示其复制生物神经系统的最终应用。在本综述中,我们将讨论人工突触设备的各种突触特性,包括突触设备的运行机制。此外,我们还回顾了有关聚合物突触装置的最新研究,重点关注通过改变聚合物结构和制造工艺来调节突触可塑性和突触衰减时间的策略。最后,我们展示了如何将突触特性的调制应用于这些设备的三大类,包括神经形态计算、具有传感功能的人工突触设备以及用于神经义肢的人工神经。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.90
自引率
0.00%
发文量
0
期刊最新文献
Difficulties and approaches in enabling learning-in-memory using crossbar arrays of memristors A liquid optical memristor using photochromic effect and capillary effect Tissue-like interfacing of planar electrochemical organic neuromorphic devices Implementation of two-step gradual reset scheme for enhancing state uniformity of 2D hBN-based memristors for image processing Modulating short-term and long-term plasticity of polymer-based artificial synapses for neuromorphic computing and beyond
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1