Dynamically Optimizing Parameters in Support Vector Regression: An Application of Electricity Load Forecasting

Chin-Chia Hsu, Chih H. Wu, Shi Chen, K. Peng
{"title":"Dynamically Optimizing Parameters in Support Vector Regression: An Application of Electricity Load Forecasting","authors":"Chin-Chia Hsu, Chih H. Wu, Shi Chen, K. Peng","doi":"10.1109/HICSS.2006.132","DOIUrl":null,"url":null,"abstract":"This study develops a novel model, GA-SVR, for parameters optimization in support vector regression and implements this new model in a problem forecasting maximum electrical daily load. The real-valued genetic algorithm (RGA) was adapted to search the optimal parameters of support vector regression (SVR) to increase the accuracy of SVR. The proposed model was tested on a complicated electricity load forecasting competition announced on the EUNITE network. The results illustrated that the new GA-SVR model outperformed previous models. Specifically, the new GA-SVR model can successfully identify the optimal values of parameters of SVR with the lowest prediction error values, MAPE and maximum error, in electricity load forecasting.","PeriodicalId":432250,"journal":{"name":"Proceedings of the 39th Annual Hawaii International Conference on System Sciences (HICSS'06)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 39th Annual Hawaii International Conference on System Sciences (HICSS'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HICSS.2006.132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

Abstract

This study develops a novel model, GA-SVR, for parameters optimization in support vector regression and implements this new model in a problem forecasting maximum electrical daily load. The real-valued genetic algorithm (RGA) was adapted to search the optimal parameters of support vector regression (SVR) to increase the accuracy of SVR. The proposed model was tested on a complicated electricity load forecasting competition announced on the EUNITE network. The results illustrated that the new GA-SVR model outperformed previous models. Specifically, the new GA-SVR model can successfully identify the optimal values of parameters of SVR with the lowest prediction error values, MAPE and maximum error, in electricity load forecasting.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
支持向量回归中参数动态优化:在电力负荷预测中的应用
本文提出了一种新的支持向量回归参数优化模型GA-SVR,并将该模型应用于最大日负荷预测问题。采用实值遗传算法(RGA)搜索支持向量回归(SVR)的最优参数,提高支持向量回归的精度。在EUNITE网络上公布的复杂电力负荷预测竞赛中对所提出的模型进行了测试。结果表明,新的GA-SVR模型优于以前的模型。具体来说,新的GA-SVR模型能够在电力负荷预测中成功地识别出预测误差最小的svm参数MAPE和最大误差的最优值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Supporting the Module Sequencing Decision in the ERP Implementation Process Flying Sinks: Heuristics for Movement in Sensor Networks Enterprise Architecture: A Social Network Perspective Document Clustering with Semantic Analysis Knowledge Extraction from Prostate Cancer Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1