Document Clustering with Semantic Analysis

Yong Wang, J. Hodges
{"title":"Document Clustering with Semantic Analysis","authors":"Yong Wang, J. Hodges","doi":"10.1109/HICSS.2006.129","DOIUrl":null,"url":null,"abstract":"Document clustering generates clusters from the whole document collection automatically and is used in many fields, including data mining and information retrieval. In the traditional vector space model, the unique words occurring in the document set are used as the features. But because of the synonym problem and the polysemous problem, such a bag of original words cannot represent the content of a document precisely. In this paper, we investigate using the sense disambiguation method to identify the sense of words to construct the feature vector for document representation. Our experimental results demonstrate that in most conditions, using sense can improve the performance of our document clustering system. But the comprehensive statistical analysis performed indicates that the differences between using original single words and using senses of words are not statistically significant. In this paper, we also provide an evaluation of several basic clustering algorithms for algorithm selection.","PeriodicalId":432250,"journal":{"name":"Proceedings of the 39th Annual Hawaii International Conference on System Sciences (HICSS'06)","volume":"144 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"48","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 39th Annual Hawaii International Conference on System Sciences (HICSS'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HICSS.2006.129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 48

Abstract

Document clustering generates clusters from the whole document collection automatically and is used in many fields, including data mining and information retrieval. In the traditional vector space model, the unique words occurring in the document set are used as the features. But because of the synonym problem and the polysemous problem, such a bag of original words cannot represent the content of a document precisely. In this paper, we investigate using the sense disambiguation method to identify the sense of words to construct the feature vector for document representation. Our experimental results demonstrate that in most conditions, using sense can improve the performance of our document clustering system. But the comprehensive statistical analysis performed indicates that the differences between using original single words and using senses of words are not statistically significant. In this paper, we also provide an evaluation of several basic clustering algorithms for algorithm selection.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于语义分析的文档聚类
文档聚类从整个文档集合中自动生成聚类,广泛应用于数据挖掘和信息检索等领域。在传统的向量空间模型中,使用文档集中出现的唯一单词作为特征。但由于同义词问题和多义问题,这样的原话包不能准确地代表一篇文章的内容。在本文中,我们研究了使用语义消歧方法来识别单词的语义,以构建用于文档表示的特征向量。实验结果表明,在大多数情况下,使用sense可以提高文档聚类系统的性能。但综合统计分析表明,使用原单字与使用词义之间的差异没有统计学意义。在本文中,我们还提供了几种基本聚类算法的评价,用于算法选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Supporting the Module Sequencing Decision in the ERP Implementation Process Flying Sinks: Heuristics for Movement in Sensor Networks Enterprise Architecture: A Social Network Perspective Document Clustering with Semantic Analysis Knowledge Extraction from Prostate Cancer Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1