Long Luo, Klaus-Tycho Foerster, Stefan Schmid, Hongfang Yu
{"title":"DaRTree","authors":"Long Luo, Klaus-Tycho Foerster, Stefan Schmid, Hongfang Yu","doi":"10.1145/3326285.3329063","DOIUrl":null,"url":null,"abstract":"The increasing amount of data replication across datacenters introduces a need for efficient bulk data transfer protocols which meet QoS guarantees, notably timely completion. We present DaRTree which leverages emerging optical reconfiguration technologies, to jointly optimize topology and multicast transfers, and thereby maximize throughput and acceptance ratio of transfer requests subject to deadlines. DaRTree is based on a novel integer linear program relaxation and deterministic rounding scheme. To this end, DaRTree uses multicast Steiner trees and adaptive routing based on the current network load. DaRTree provides its guarantees without need for rescheduling or preemption. Our evaluations show that DaRTree increases the network throughput and the number of accepted requests by up to 70%, especially for larger Wide-Area Networks (WANs). In fact, we also find that DaRTree even outperforms state-of-the-art solutions when the network scheduler is only capable of routing unicast transfers or when the WAN topology is bound to be non-reconfigurable.","PeriodicalId":269719,"journal":{"name":"Proceedings of the International Symposium on Quality of Service","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Symposium on Quality of Service","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3326285.3329063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19
Abstract
The increasing amount of data replication across datacenters introduces a need for efficient bulk data transfer protocols which meet QoS guarantees, notably timely completion. We present DaRTree which leverages emerging optical reconfiguration technologies, to jointly optimize topology and multicast transfers, and thereby maximize throughput and acceptance ratio of transfer requests subject to deadlines. DaRTree is based on a novel integer linear program relaxation and deterministic rounding scheme. To this end, DaRTree uses multicast Steiner trees and adaptive routing based on the current network load. DaRTree provides its guarantees without need for rescheduling or preemption. Our evaluations show that DaRTree increases the network throughput and the number of accepted requests by up to 70%, especially for larger Wide-Area Networks (WANs). In fact, we also find that DaRTree even outperforms state-of-the-art solutions when the network scheduler is only capable of routing unicast transfers or when the WAN topology is bound to be non-reconfigurable.