Auxiliary Edge Detection for Semantic Image Segmentation

Wenrui Liu, Zongqing Lu, He Xu
{"title":"Auxiliary Edge Detection for Semantic Image Segmentation","authors":"Wenrui Liu, Zongqing Lu, He Xu","doi":"10.1145/3404555.3404624","DOIUrl":null,"url":null,"abstract":"Semantic segmentation is a challenging task which can be formulated as a pixel-wise classification problem. Most FCN-based methods of semantic segmentation apply simple bilinear up-sampling to recover the final pixel-wise prediction, which may lead to misclassification near the object edges. To solve this problem, we focus on the supplementary spatial details of semantic segmentation using edge information. We present an approach to incorporate the relevant auxiliary edge information to semantic segmentation features. By applying the explicit supervision of semantic boundary using intermediate features, the multi-tasks network learns features with strong inter-class distinctive ability. The attention-based feature fusion module fuses the high-resolution edge features with wide-receptive-field semantic features to sufficiently leverage the complementary information. Experiments on the Cityscapes dataset show the effectiveness of fusing intermediate edge information.","PeriodicalId":220526,"journal":{"name":"Proceedings of the 2020 6th International Conference on Computing and Artificial Intelligence","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 6th International Conference on Computing and Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3404555.3404624","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Semantic segmentation is a challenging task which can be formulated as a pixel-wise classification problem. Most FCN-based methods of semantic segmentation apply simple bilinear up-sampling to recover the final pixel-wise prediction, which may lead to misclassification near the object edges. To solve this problem, we focus on the supplementary spatial details of semantic segmentation using edge information. We present an approach to incorporate the relevant auxiliary edge information to semantic segmentation features. By applying the explicit supervision of semantic boundary using intermediate features, the multi-tasks network learns features with strong inter-class distinctive ability. The attention-based feature fusion module fuses the high-resolution edge features with wide-receptive-field semantic features to sufficiently leverage the complementary information. Experiments on the Cityscapes dataset show the effectiveness of fusing intermediate edge information.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
语义图像分割的辅助边缘检测
语义分割是一项具有挑战性的任务,可以将其表述为逐像素分类问题。大多数基于fcn的语义分割方法采用简单的双线性上采样来恢复最终的逐像素预测,这可能导致目标边缘附近的错误分类。为了解决这一问题,我们将重点放在利用边缘信息进行语义分割的补充空间细节上。我们提出了一种将相关辅助边缘信息纳入语义分割特征的方法。多任务网络通过使用中间特征对语义边界进行显式监督,学习到具有较强类间区分能力的特征。基于注意力的特征融合模块将高分辨率边缘特征与宽接受场语义特征融合,充分利用互补信息。在城市景观数据集上的实验表明了融合中间边缘信息的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
mRNA Big Data Analysis of Hepatoma Carcinoma Between Different Genders Generalization or Instantiation?: Estimating the Relative Abstractness between Images and Text Auxiliary Edge Detection for Semantic Image Segmentation Intrusion Detection of Abnormal Objects for Railway Scenes Using Infrared Images Multi-Tenant Machine Learning Platform Based on Kubernetes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1