{"title":"Minimum Cost Fault Tolerant Adder Circuits in Reversible Logic Synthesis","authors":"Sajib Kumar Mitra, A. Chowdhury","doi":"10.1109/VLSID.2012.93","DOIUrl":null,"url":null,"abstract":"Conventional circuit dissipates energy to reload missing information because of overlapped mapping between input and output vectors. Reversibility recovers energy loss and prevents bit error by including Fault Tolerant mechanism. Reversible Computing is gaining the popularity of various fields such as Quantum Computing, DNA Informatics and CMOS Technology etc. In this paper, we have proposed the fault tolerant design of Reversible Full Adder (RFT-FA) with minimum quantum cost. Also we have proposed the cost effective design of Carry Skip Adder (CSA) and Carry Look-Ahead Adder (CLA) circuits by using proposed fault tolerant full adder circuit. The regular structures of n-bit Reversible Fault Tolerant Carry Skip Adder (RFT-CSA) and Carry Look-ahead Adder (RFT-CLA) by composing several theorems. Proposed designs have been populated by merging the minimization of total gates, garbage outputs, quantum cost and critical path delay criterion and comparing with exiting designs.","PeriodicalId":405021,"journal":{"name":"2012 25th International Conference on VLSI Design","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"49","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 25th International Conference on VLSI Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSID.2012.93","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 49
Abstract
Conventional circuit dissipates energy to reload missing information because of overlapped mapping between input and output vectors. Reversibility recovers energy loss and prevents bit error by including Fault Tolerant mechanism. Reversible Computing is gaining the popularity of various fields such as Quantum Computing, DNA Informatics and CMOS Technology etc. In this paper, we have proposed the fault tolerant design of Reversible Full Adder (RFT-FA) with minimum quantum cost. Also we have proposed the cost effective design of Carry Skip Adder (CSA) and Carry Look-Ahead Adder (CLA) circuits by using proposed fault tolerant full adder circuit. The regular structures of n-bit Reversible Fault Tolerant Carry Skip Adder (RFT-CSA) and Carry Look-ahead Adder (RFT-CLA) by composing several theorems. Proposed designs have been populated by merging the minimization of total gates, garbage outputs, quantum cost and critical path delay criterion and comparing with exiting designs.