Deep Quantized Representation For Enhanced Reconstruction

Akash Gupta, Abhishek Aich, Kevin Rodriguez, G. Reddy, A. Roy-Chowdhury
{"title":"Deep Quantized Representation For Enhanced Reconstruction","authors":"Akash Gupta, Abhishek Aich, Kevin Rodriguez, G. Reddy, A. Roy-Chowdhury","doi":"10.1109/ISBIWorkshops50223.2020.9153414","DOIUrl":null,"url":null,"abstract":"While machine learning approaches have shown remarkable performance in biomedical image analysis, most of these methods rely on high-quality and accurate imaging data. However, collecting such data requires intensive and careful manual effort. One of the major challenges in imaging the Shoot Apical Meristem (SAM) of Arabidopsis thaliana, is that the deeper slices in the z-stack suffer from different perpetual quality related problems like poor contrast and blurring. These quality related issues often lead to disposal of the painstakingly collected data with little to no control on quality while collecting the data. Therefore, it becomes necessary to employ and design techniques that can enhance the images to make it more suitable for further analysis. In this paper, we propose a data-driven Deep Quantized Latent Representation (DQLR) methodology for high-quality image reconstruction in the Shoot Apical Meristem (SAM) of Arabidopsis thaliana. Our proposed framework utilizes multiple consecutive slices in the z-stack to learn a low dimensional latent space, quantize it and subsequently perform reconstruction using the quantized representation to obtain sharper images. Experiments on a publicly available dataset validate our methodology showing promising results. Our code is available at github.com/agupt013/enhancedRec.git.","PeriodicalId":329356,"journal":{"name":"2020 IEEE 17th International Symposium on Biomedical Imaging Workshops (ISBI Workshops)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 17th International Symposium on Biomedical Imaging Workshops (ISBI Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBIWorkshops50223.2020.9153414","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

While machine learning approaches have shown remarkable performance in biomedical image analysis, most of these methods rely on high-quality and accurate imaging data. However, collecting such data requires intensive and careful manual effort. One of the major challenges in imaging the Shoot Apical Meristem (SAM) of Arabidopsis thaliana, is that the deeper slices in the z-stack suffer from different perpetual quality related problems like poor contrast and blurring. These quality related issues often lead to disposal of the painstakingly collected data with little to no control on quality while collecting the data. Therefore, it becomes necessary to employ and design techniques that can enhance the images to make it more suitable for further analysis. In this paper, we propose a data-driven Deep Quantized Latent Representation (DQLR) methodology for high-quality image reconstruction in the Shoot Apical Meristem (SAM) of Arabidopsis thaliana. Our proposed framework utilizes multiple consecutive slices in the z-stack to learn a low dimensional latent space, quantize it and subsequently perform reconstruction using the quantized representation to obtain sharper images. Experiments on a publicly available dataset validate our methodology showing promising results. Our code is available at github.com/agupt013/enhancedRec.git.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
增强重建的深度量化表示
虽然机器学习方法在生物医学图像分析中表现出色,但这些方法大多依赖于高质量和准确的成像数据。然而,收集这些数据需要密集而仔细的手工工作。拟南芥(Arabidopsis thaliana)茎尖分生组织(Shoot Apical Meristem, SAM)成像的主要挑战之一是,z堆栈中较深的切片遭受不同的永久性质量相关问题,如对比度差和模糊。这些与质量相关的问题经常导致处理辛苦收集的数据,在收集数据时几乎没有控制质量。因此,有必要采用和设计可以增强图像的技术,使其更适合进一步分析。本文提出了一种数据驱动的深度量化潜在表示(DQLR)方法,用于拟南芥茎尖分生组织(SAM)的高质量图像重建。我们提出的框架利用z堆栈中的多个连续切片来学习低维潜在空间,将其量化,然后使用量化表示进行重建,以获得更清晰的图像。在一个公开可用的数据集上的实验验证了我们的方法,显示出有希望的结果。我们的代码可在github.com/agupt013/enhancedRec.git上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Material Decomposition Problem in Spectral CT: A Transfer Deep Learning Approach Deep Convolutional Neural Network for Parkinson’s Disease Based Handwriting Screening Deep Quantized Representation For Enhanced Reconstruction Multi-Channel Deep Neural Network For Temporal Lobe Epilepsy Classification Using Multimodal Mri Data Joint Low Dose CT Denoising And Kidney Segmentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1