An Oppositional Learning Prediction Operator for Simulated Kalman Filter

Z. Ibrahim, Kamil Zakwan Mohd Azmi, Nor Azlina Ab. Aziz, Nor Hidayati Abdul Aziz, B. Muhammad, Mohd Falfazli Mat Jusof, M. I. Shapiai
{"title":"An Oppositional Learning Prediction Operator for Simulated Kalman Filter","authors":"Z. Ibrahim, Kamil Zakwan Mohd Azmi, Nor Azlina Ab. Aziz, Nor Hidayati Abdul Aziz, B. Muhammad, Mohd Falfazli Mat Jusof, M. I. Shapiai","doi":"10.1109/ICCIA.2018.00044","DOIUrl":null,"url":null,"abstract":"Simulated Kalman filter (SKF) is a recent metaheuristic optimization algorithm established in 2015. In the present study, we introduce a prediction operator in SKF to prolong its exploration and to avoid premature convergence. The proposed prediction operator is based on oppositional learning. The results show that using CEC2014 as benchmark problems, the SKF algorithm with oppositional learning prediction operator outperforms the original SKF algorithm in most cases.","PeriodicalId":297098,"journal":{"name":"2018 3rd International Conference on Computational Intelligence and Applications (ICCIA)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 3rd International Conference on Computational Intelligence and Applications (ICCIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIA.2018.00044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Simulated Kalman filter (SKF) is a recent metaheuristic optimization algorithm established in 2015. In the present study, we introduce a prediction operator in SKF to prolong its exploration and to avoid premature convergence. The proposed prediction operator is based on oppositional learning. The results show that using CEC2014 as benchmark problems, the SKF algorithm with oppositional learning prediction operator outperforms the original SKF algorithm in most cases.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种针对模拟卡尔曼滤波器的对立学习预测算子
模拟卡尔曼滤波(SKF)是2015年建立的一种新的元启发式优化算法。在本研究中,我们在SKF中引入了一个预测算子,以延长其探索时间并避免过早收敛。提出的预测算子是基于对立学习的。结果表明,以CEC2014为基准问题,具有对立学习预测算子的SKF算法在大多数情况下优于原SKF算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Text Extraction and Categorization from Watermark Scientific Document in Bulk Locating Heartbeats from Electrocardiograms and Other Correlated Signals Combining Deep Learning and JSEG Cuda Segmentation Algorithm for Electrical Components Recognition An Oppositional Learning Prediction Operator for Simulated Kalman Filter Clustering Method for Financial Time Series with Co-Movement Relationship
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1