System of Predicting Dementia Using Transformer Based Ensemble Learning

Kazumi Nishikawa, Rin Hirakawa, H. Kawano, Y. Nakatoh
{"title":"System of Predicting Dementia Using Transformer Based Ensemble Learning","authors":"Kazumi Nishikawa, Rin Hirakawa, H. Kawano, Y. Nakatoh","doi":"10.1109/ICCE53296.2022.9730395","DOIUrl":null,"url":null,"abstract":"In the previous research of dementia discrimination by voice, a discrimination method using multiple acoustic features by machine learning has been proposed. However, they do not focus on speech analysis in mild dementia patients. Therefore, we proposed a dementia discrimination system based on the analysis of vowel utterance features. The results of the t-test indicated that some cases of dementia appeared in the voice of mild dementia patients. Therefore, we proposed the ensemble discrimination system using a classifier with statistical acoustic features and a Neural Network of transformer models, and the F-score is 0.907, which is the best result.","PeriodicalId":350644,"journal":{"name":"2022 IEEE International Conference on Consumer Electronics (ICCE)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Consumer Electronics (ICCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE53296.2022.9730395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In the previous research of dementia discrimination by voice, a discrimination method using multiple acoustic features by machine learning has been proposed. However, they do not focus on speech analysis in mild dementia patients. Therefore, we proposed a dementia discrimination system based on the analysis of vowel utterance features. The results of the t-test indicated that some cases of dementia appeared in the voice of mild dementia patients. Therefore, we proposed the ensemble discrimination system using a classifier with statistical acoustic features and a Neural Network of transformer models, and the F-score is 0.907, which is the best result.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于变压器集成学习的痴呆预测系统
在之前的语音识别痴呆症的研究中,提出了一种基于机器学习的多种声学特征的识别方法。然而,他们并没有把重点放在轻度痴呆患者的语言分析上。因此,我们提出了一种基于元音语音特征分析的痴呆症识别系统。t检验结果表明,部分痴呆病例出现在轻度痴呆患者的声音中。因此,我们提出了基于统计声学特征分类器和变压器模型神经网络的集成识别系统,f值为0.907,是最佳结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
YOLO-Based Deep Learning Design for In-Cabin Monitoring System with Fisheye-Lens Camera Deep Guidance Decoder with Semantic Boundary Learning for Boundary-Aware Semantic Segmentation Barcode Image Identification Based on Maximum a Posterior Probability Big Data Edge on Consumer Devices for Precision Medicine System of Predicting Dementia Using Transformer Based Ensemble Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1