An Optimized Adaptive Learning Approach Based on Cuckoo Search Algorithm

El Miloud Smaili, Salma Azzouzi, My El Hassan Charaf
{"title":"An Optimized Adaptive Learning Approach Based on Cuckoo Search Algorithm","authors":"El Miloud Smaili, Salma Azzouzi, My El Hassan Charaf","doi":"10.1109/ICOA55659.2022.9934280","DOIUrl":null,"url":null,"abstract":"The rapid expansion of MOOCs (massive open online courses) allows learners to benefit from these courses by removing the barriers that obstruct the right to an open high-quality education. The courses offered on MOOC platforms are often free which has revolutionized this mode of distance learning, especially with the restrictions imposed by the advent of the COVID-19 pandemic. However, even though the number of registrants to MOOCs is quite considerable, only 10% of the learners complete the MOOC and obtain a certification. This phenomenon leads us to dig deeper to wonder about the means to avoid the high dropout rate of learners in such platforms. For this purpose, we suggest in this paper two complementary systems: a preventive system coupled with a proactive system to personalize the learners' pathways according to their specific needs and prior knowledge. The optimization of the pathways will be handled using a metaheuristic optimization algorithm called: Cuckoo Search Algorithm.","PeriodicalId":345017,"journal":{"name":"2022 8th International Conference on Optimization and Applications (ICOA)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 8th International Conference on Optimization and Applications (ICOA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOA55659.2022.9934280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid expansion of MOOCs (massive open online courses) allows learners to benefit from these courses by removing the barriers that obstruct the right to an open high-quality education. The courses offered on MOOC platforms are often free which has revolutionized this mode of distance learning, especially with the restrictions imposed by the advent of the COVID-19 pandemic. However, even though the number of registrants to MOOCs is quite considerable, only 10% of the learners complete the MOOC and obtain a certification. This phenomenon leads us to dig deeper to wonder about the means to avoid the high dropout rate of learners in such platforms. For this purpose, we suggest in this paper two complementary systems: a preventive system coupled with a proactive system to personalize the learners' pathways according to their specific needs and prior knowledge. The optimization of the pathways will be handled using a metaheuristic optimization algorithm called: Cuckoo Search Algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于布谷鸟搜索算法的优化自适应学习方法
mooc(大规模开放在线课程)的迅速扩张,使学习者能够从这些课程中受益,消除了阻碍他们接受开放高质量教育的障碍。MOOC平台上提供的课程通常是免费的,这给这种远程学习模式带来了革命性的变化,特别是在COVID-19大流行到来的限制下。然而,尽管MOOC的注册人数相当可观,但只有10%的学习者完成了MOOC课程并获得了认证。这一现象促使我们更深入地思考如何避免此类平台中学习者的高辍学率。为此,我们在本文中提出了两个互补的系统:一个预防系统与一个主动系统相结合,根据学习者的具体需求和先验知识个性化学习者的路径。路径的优化将使用一种称为布谷鸟搜索算法的元启发式优化算法来处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The importance of enterprise resource planning (ERP) in the optimisation of the small and medium enterprise's ressources in Morocco Nonsmooth Optimization for Synaptic Depression Dynamics 6G and V2X Communications: Applications, Features, and Challenges An Optimized Adaptive Learning Approach Based on Cuckoo Search Algorithm Waste solid management using Machine learning approch
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1