Contrasting Offline and Online Results when Evaluating Recommendation Algorithms

Marco Rossetti, Fabio Stella, M. Zanker
{"title":"Contrasting Offline and Online Results when Evaluating Recommendation Algorithms","authors":"Marco Rossetti, Fabio Stella, M. Zanker","doi":"10.1145/2959100.2959176","DOIUrl":null,"url":null,"abstract":"Most evaluations of novel algorithmic contributions assess their accuracy in predicting what was withheld in an offline evaluation scenario. However, several doubts have been raised that standard offline evaluation practices are not appropriate to select the best algorithm for field deployment. The goal of this work is therefore to compare the offline and the online evaluation methodology with the same study participants, i.e. a within users experimental design. This paper presents empirical evidence that the ranking of algorithms based on offline accuracy measurements clearly contradicts the results from the online study with the same set of users. Thus the external validity of the most commonly applied evaluation methodology is not guaranteed.","PeriodicalId":315651,"journal":{"name":"Proceedings of the 10th ACM Conference on Recommender Systems","volume":"146 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"73","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 10th ACM Conference on Recommender Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2959100.2959176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 73

Abstract

Most evaluations of novel algorithmic contributions assess their accuracy in predicting what was withheld in an offline evaluation scenario. However, several doubts have been raised that standard offline evaluation practices are not appropriate to select the best algorithm for field deployment. The goal of this work is therefore to compare the offline and the online evaluation methodology with the same study participants, i.e. a within users experimental design. This paper presents empirical evidence that the ranking of algorithms based on offline accuracy measurements clearly contradicts the results from the online study with the same set of users. Thus the external validity of the most commonly applied evaluation methodology is not guaranteed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在评估推荐算法时对比离线和在线结果
大多数对新算法贡献的评估评估了它们在预测离线评估场景中被隐瞒的内容方面的准确性。然而,有人提出了一些质疑,即标准的离线评估实践不适合为现场部署选择最佳算法。因此,这项工作的目标是在相同的研究参与者中比较离线和在线评估方法,即用户内实验设计。本文提供的经验证据表明,基于离线精度测量的算法排名明显与同一组用户的在线研究结果相矛盾。因此,最常用的评价方法的外部有效性是不能保证的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Opening Remarks Mining Information for the Cold-Item Problem Are You Influenced by Others When Rating?: Improve Rating Prediction by Conformity Modeling Contrasting Offline and Online Results when Evaluating Recommendation Algorithms Intent-Aware Diversification Using a Constrained PLSA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1