Transitive Transfer Sparse Coding for Distant Domain

Lingtian Feng, Feng Qian, Xin He, Yuqi Fan, H. Cai, Guangmin Hu
{"title":"Transitive Transfer Sparse Coding for Distant Domain","authors":"Lingtian Feng, Feng Qian, Xin He, Yuqi Fan, H. Cai, Guangmin Hu","doi":"10.1109/ICASSP39728.2021.9415021","DOIUrl":null,"url":null,"abstract":"The transfer learning between the source and target domain has already achieved significant success in machine learning areas. However, the existing methods can not achieve satisfactory result when solving the two distant domains transfer learning problem. In the worst case, it could lead to the negative transfer. In this paper, we propose a novel framework called transitive transfer sparse coding (TTSC) to solve the two distant domains transfer learning problem. On the one hand, as an extension of the sparse coding, the TTSC framework constructs a robust and high-level dictionary across three different domains and simultaneously obtains three good feature sparse representations. On the other hand, TTSC utilizes the intermediate domain as a strong bridge to transfer valuable knowledge between the source domain and target domain. Empirical studies validated that the TTSC framework significantly could outperform state-of-the-art methods.","PeriodicalId":347060,"journal":{"name":"ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP39728.2021.9415021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The transfer learning between the source and target domain has already achieved significant success in machine learning areas. However, the existing methods can not achieve satisfactory result when solving the two distant domains transfer learning problem. In the worst case, it could lead to the negative transfer. In this paper, we propose a novel framework called transitive transfer sparse coding (TTSC) to solve the two distant domains transfer learning problem. On the one hand, as an extension of the sparse coding, the TTSC framework constructs a robust and high-level dictionary across three different domains and simultaneously obtains three good feature sparse representations. On the other hand, TTSC utilizes the intermediate domain as a strong bridge to transfer valuable knowledge between the source domain and target domain. Empirical studies validated that the TTSC framework significantly could outperform state-of-the-art methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
远距离域的传递转移稀疏编码
源域和目标域之间的迁移学习已经在机器学习领域取得了显著的成功。然而,现有的方法在解决两远域迁移学习问题时并不能取得令人满意的效果。在最坏的情况下,它可能导致负转移。在本文中,我们提出了一个新的框架,称为传递转移稀疏编码(TTSC)来解决两远域迁移学习问题。一方面,作为稀疏编码的扩展,TTSC框架构建了一个跨三个不同域的鲁棒高阶字典,同时获得了三个良好的特征稀疏表示;另一方面,TTSC利用中间领域作为强大的桥梁,在源领域和目标领域之间传递有价值的知识。实证研究证实,TTSC框架显著优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Subspace Oddity - Optimization on Product of Stiefel Manifolds for EEG Data Recognition of Dynamic Hand Gesture Based on Mm-Wave Fmcw Radar Micro-Doppler Signatures Multi-Decoder Dprnn: Source Separation for Variable Number of Speakers Topic-Aware Dialogue Generation with Two-Hop Based Graph Attention On The Accuracy Limit of Joint Time-Delay/Doppler/Acceleration Estimation with a Band-Limited Signal
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1