Lingtian Feng, Feng Qian, Xin He, Yuqi Fan, H. Cai, Guangmin Hu
{"title":"Transitive Transfer Sparse Coding for Distant Domain","authors":"Lingtian Feng, Feng Qian, Xin He, Yuqi Fan, H. Cai, Guangmin Hu","doi":"10.1109/ICASSP39728.2021.9415021","DOIUrl":null,"url":null,"abstract":"The transfer learning between the source and target domain has already achieved significant success in machine learning areas. However, the existing methods can not achieve satisfactory result when solving the two distant domains transfer learning problem. In the worst case, it could lead to the negative transfer. In this paper, we propose a novel framework called transitive transfer sparse coding (TTSC) to solve the two distant domains transfer learning problem. On the one hand, as an extension of the sparse coding, the TTSC framework constructs a robust and high-level dictionary across three different domains and simultaneously obtains three good feature sparse representations. On the other hand, TTSC utilizes the intermediate domain as a strong bridge to transfer valuable knowledge between the source domain and target domain. Empirical studies validated that the TTSC framework significantly could outperform state-of-the-art methods.","PeriodicalId":347060,"journal":{"name":"ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP39728.2021.9415021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
The transfer learning between the source and target domain has already achieved significant success in machine learning areas. However, the existing methods can not achieve satisfactory result when solving the two distant domains transfer learning problem. In the worst case, it could lead to the negative transfer. In this paper, we propose a novel framework called transitive transfer sparse coding (TTSC) to solve the two distant domains transfer learning problem. On the one hand, as an extension of the sparse coding, the TTSC framework constructs a robust and high-level dictionary across three different domains and simultaneously obtains three good feature sparse representations. On the other hand, TTSC utilizes the intermediate domain as a strong bridge to transfer valuable knowledge between the source domain and target domain. Empirical studies validated that the TTSC framework significantly could outperform state-of-the-art methods.