Fault table generation using Graphics Processing Units

Kanupriya Gulati, S. Khatri
{"title":"Fault table generation using Graphics Processing Units","authors":"Kanupriya Gulati, S. Khatri","doi":"10.1109/HLDVT.2009.5340175","DOIUrl":null,"url":null,"abstract":"In this paper, we explore the implementation of fault table generation on a Graphics Processing Unit (GPU). A fault table is essential for fault diagnosis and fault detection in VLSI testing and debug. Generating a fault table requires extensive fault simulation, with no fault dropping, and is extremely expensive from a computational standpoint. Fault simulation is inherently parallelizable, and the large number of threads that a GPU can operate on in parallel can be employed to accelerate fault simulation, and thereby accelerate fault table generation. Our approach, called GFTABLE, employs a pattern parallel approach which utilizes both bit-parallelism and thread-level parallelism. Our implementation is a significantly modified version of FSIM, which is pattern parallel fault simulation approach for single core processors. Like FSIM, GFTABLE utilizes critical path tracing and the dominator concept to reduce runtime. Further modifications to FSIM allow us to maximally harness the GPU's huge memory bandwidth and high computational power. Our approach does not store the circuit (or any part of the circuit) on the GPU. Efficient parallel reduction operations are implemented in our implementation of GFTABLE. We compare our performance to FSIM*, which is FSIM modified to generate a fault table on a single core processor. Our experiments indicate that GFTABLE, implemented on a single NVIDIA GeForce GTX 280 GPU card, can generate a fault table for 0.5 million test patterns on average 7.85x faster when compared with FSIM*. With the NVIDIA Tesla server, our approach would be potentially 34.82x faster.","PeriodicalId":153879,"journal":{"name":"2009 IEEE International High Level Design Validation and Test Workshop","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International High Level Design Validation and Test Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HLDVT.2009.5340175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In this paper, we explore the implementation of fault table generation on a Graphics Processing Unit (GPU). A fault table is essential for fault diagnosis and fault detection in VLSI testing and debug. Generating a fault table requires extensive fault simulation, with no fault dropping, and is extremely expensive from a computational standpoint. Fault simulation is inherently parallelizable, and the large number of threads that a GPU can operate on in parallel can be employed to accelerate fault simulation, and thereby accelerate fault table generation. Our approach, called GFTABLE, employs a pattern parallel approach which utilizes both bit-parallelism and thread-level parallelism. Our implementation is a significantly modified version of FSIM, which is pattern parallel fault simulation approach for single core processors. Like FSIM, GFTABLE utilizes critical path tracing and the dominator concept to reduce runtime. Further modifications to FSIM allow us to maximally harness the GPU's huge memory bandwidth and high computational power. Our approach does not store the circuit (or any part of the circuit) on the GPU. Efficient parallel reduction operations are implemented in our implementation of GFTABLE. We compare our performance to FSIM*, which is FSIM modified to generate a fault table on a single core processor. Our experiments indicate that GFTABLE, implemented on a single NVIDIA GeForce GTX 280 GPU card, can generate a fault table for 0.5 million test patterns on average 7.85x faster when compared with FSIM*. With the NVIDIA Tesla server, our approach would be potentially 34.82x faster.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用图形处理单元生成故障表
在本文中,我们探讨了在图形处理单元(GPU)上生成故障表的实现。在超大规模集成电路的测试和调试中,故障表是进行故障诊断和故障检测的必要工具。生成故障表需要大量的故障模拟,没有故障丢失,从计算的角度来看,这是非常昂贵的。故障仿真具有内在的并行性,可以利用GPU能够并行运行的大量线程来加速故障仿真,从而加速故障表的生成。我们的方法,称为GFTABLE,采用了一种模式并行方法,它同时利用了位并行性和线程级并行性。我们的实现是FSIM的一个重大修改版本,FSIM是一种针对单核处理器的模式并行故障仿真方法。与FSIM一样,GFTABLE利用关键路径跟踪和支配者概念来减少运行时间。对FSIM的进一步修改使我们能够最大限度地利用GPU的巨大内存带宽和高计算能力。我们的方法不将电路(或电路的任何部分)存储在GPU上。我们在GFTABLE的实现中实现了高效的并行缩减操作。我们将我们的性能与FSIM*进行比较,FSIM*是FSIM修改后在单核处理器上生成故障表的。我们的实验表明,在单个NVIDIA GeForce GTX 280 GPU卡上实现的GFTABLE可以生成50万个测试模式的故障表,比FSIM*平均快7.85倍。使用NVIDIA Tesla服务器,我们的方法可能会快34.82倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automated debugging with high level abstraction and refinement Modular arithmetic decision procedure with auto-correction mechanism Fault table generation using Graphics Processing Units Dynamic verification of Multicore Communication applications in MCAPI FLARE: A design environment for FLASH-based space applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1